

Welcome to bayesloop’s documentation!

[image: logo]

Probabilistic programming framework that facilitates objective model selection for time-varying parameter models.

See also

If you want to contribute to the project or just browse the source code, visit the Github repository [https://github.com/christophmark/bayesloop] of bayesloop.

Contents

	Installation
	Development version

	Dependencies

	Optional dependencies

	Tutorials
	First steps with bayesloop
	Study class

	Data import

	Observation model

	Transition model

	Model fit

	Plotting

	Saving studies

	Model Selection
	Bayes factors

	Combined transition models

	Serial transition model

	Optimization of hyper-parameters
	Global optimization

	Conditional optimization in nested transition models

	Hyper-study

	Change-point study
	Analyzing abrupt changes of parameter values

	Analyzing structural breaks in time series models

	Online study

	Prior distributions
	Parameter prior

	Hyper-parameter priors

	Custom observation models
	Sympy.stats random variables

	Scipy.stats probability distributions

	NumPy likelihood functions

	Probability parser

	Multiprocessing

	Examples
	Anomalous diffusion
	Diffusion gradient

	Regime-switch diffusion process

	Stock market fluctuations
	Persistent random walk model

	Online study

	Volatility spikes

	Islands of stability

	Automatic tuning

	Real-time model selection

	API Reference
	Study types

	Observation models

	Transition models

	File I/O

	Probability Parser

Indices and tables

	Index

	Module Index

	Search Page

Installation

The easiest way to install the latest release version of bayesloop is via pip:

pip install bayesloop

Alternatively, a zipped version can be downloaded here [https://github.com/christophmark/bayesloop/releases]. The module is installed by calling python setup.py install.

Development version

The latest development version of bayesloop can be installed from the master branch using pip (requires git):

pip install git+https://github.com/christophmark/bayesloop

Alternatively, use this zipped version [https://github.com/christophmark/bayesloop/zipball/master] or clone the repository.

Dependencies

bayesloop is tested on Python 2.7, 3.5 and 3.6. It depends on NumPy, SciPy, SymPy, matplotlib, tqdm and dill. All except the last two are already included in the Anaconda distribution [https://www.continuum.io/downloads] of Python. Windows users may also take advantage of pre-compiled binaries for all dependencies, which can be found at Christoph Gohlke’s page [http://www.lfd.uci.edu/~gohlke/pythonlibs/].

Optional dependencies

bayesloop supports multiprocessing for computationally expensive analyses, based on the pathos [https://github.com/uqfoundation/pathos] module. The latest version can be obtained directly from GitHub using pip (requires git):

pip install git+https://github.com/uqfoundation/pathos

Note

Windows users need to install a C compiler before installing pathos. One possible solution for 64bit systems is to install Microsoft Visual C++ 2008 SP1 Redistributable Package (x64) [http://www.microsoft.com/en-us/download/confirmation.aspx?id=2092] and Microsoft Visual C++ Compiler for Python 2.7 [http://www.microsoft.com/en-us/download/details.aspx?id=44266].

Tutorials

	First steps with bayesloop
	Study class

	Data import

	Observation model

	Transition model

	Model fit

	Plotting

	Saving studies

	Model Selection
	Bayes factors

	Combined transition models

	Serial transition model

	Optimization of hyper-parameters
	Global optimization

	Conditional optimization in nested transition models

	Hyper-study

	Change-point study
	Analyzing abrupt changes of parameter values
	Analysis of a single change-point

	Exploring possible change-points

	Analysis of multiple change-points

	Analyzing structural breaks in time series models

	Online study

	Prior distributions
	Parameter prior
	Prior functions and arrays

	SymPy prior

	Hyper-parameter priors

	Custom observation models
	Sympy.stats random variables

	Scipy.stats probability distributions

	NumPy likelihood functions

	Probability parser

	Multiprocessing

First steps with bayesloop

bayesloop models feature a two-level hierarchical structure: the
low-level, observation model filters out measurement noise and provides
the parameters, that one is interested in (volatility of stock prices,
diffusion coefficient of particles, directional persistence of migrating
cancer cells, rate of randomly occurring events, …). The observation
model is, in most cases, given by a simple and well-known stochastic
process: price changes are Gaussian-distributed, turning angles of
moving cells follow a von-Mises distribution and the number of rare
events within a given interval of time is Poisson-distributed. The aim
of the observation model is to describe the measured data on a short
time scale, while the parameters may change on longer time scales. The
high-level, transition model describes how the parameters of the
observation model change over time, i.e. whether there are abrupt
parameter jumps or gradual variations. The transition model may itself
depend on so-called hyper-parameters, for example the likelihood of
parameter jumps, the magnitude of gradual parameter variations or the
slope of a deterministic linear trend. The following tutorials show how
to use the bayesloop module to infer both time-varying parameter
values of the observation model as well as the hyper-parameter values of
the transition model and compare different hypotheses about the
parameter dynamics by approximating the model evidence, i.e. the
probability of the measured data, given the observation model and
transition model.

The first section of the tutorial introduces the main class of the
module, Study, which enables fits of time-varying parameter models
with fixed hyper-parameter values and the optimization of such
hyper-parameters based on the model evidence. We provide a detailed
description of how to import data, set the observation model and
transition model, and perform the model fit. Finally, a plotting
function to display the results is discussed briefly. This tutorial
therefore provides the basis for later tutorials that discuss the
extended classes HyperStudy, ChangepointStudy and
OnlineStudy.

Study class

To start a new data study/analysis, create a new instance of the
Study class:

In [1]:

%matplotlib inline
import matplotlib.pyplot as plt # plotting
import seaborn as sns # nicer plots
sns.set_style('whitegrid') # plot styling

import bayesloop as bl

S = bl.Study()

+ Created new study.

This object is central to an analysis conducted with bayesloop. It
stores the data and further provides the methods to perform
probabilistic inference on the models defined within the class, as
described below.

Data import

In this first study, we use a simple, yet instructive example of
heterogeneous time series, the annual number of coal mining accidents in
the UK from 1851 to 1962. The data is imported as a NumPy array,
together with corresponding timestamps. Note that setting timestamps is
optional (if none are provided, timestamps are set to an integer
sequence: 0, 1, 2,…).

In [2]:

import numpy as np

data = np.array([5, 4, 1, 0, 4, 3, 4, 0, 6, 3, 3, 4, 0, 2, 6, 3, 3, 5, 4, 5, 3, 1, 4,
 4, 1, 5, 5, 3, 4, 2, 5, 2, 2, 3, 4, 2, 1, 3, 2, 2, 1, 1, 1, 1, 3, 0,
 0, 1, 0, 1, 1, 0, 0, 3, 1, 0, 3, 2, 2, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0,
 0, 2, 1, 0, 0, 0, 1, 1, 0, 2, 3, 3, 1, 1, 2, 1, 1, 1, 1, 2, 3, 3, 0,
 0, 0, 1, 4, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0])

S.load(data, timestamps=np.arange(1852, 1962))

+ Successfully imported array.

Note that this particular data set is also hard-coded into the Study
class, for convenient testing:

In [3]:

S.loadExampleData()

+ Successfully imported example data.

In case you have multiple observations for each time step, you may also
provide the data in the form
np.array([[x1,y1,z1], [x2,y2,z2], ..., [xn,yn,zn]]). Missing data
points should be included as np.nan.

Observation model

The first step to create a probabilistic model to explain the data is to
define the observation model, or likelihood. The observation
model states the probability (density) of a data point at time
\(t\), given the parameter values at time \(t\) and possibly
past data points. It therefore resembles the low-level model, in
contrast to the transition model which describes how the parameters of
the observation model change over time.

As coal mining disasters fortunately are rare events, we may model the
number of accidents per year by a
Poisson [https://en.wikipedia.org/wiki/Poisson_distribution]
distribution. In bayesloop, this is done as follows:

In [4]:

L = bl.observationModels.Poisson('accident_rate', bl.oint(0, 6, 1000))
S.set(L)

+ Observation model: Poisson. Parameter(s): ['accident_rate']

We first define the observation model and provide two arguments: A name
for the only parameter of the model, the 'accident_rate'. We further
have to provide discrete values for this parameter, as bayesloop
computes all probability distributions on grids. As the Poisson
distribution expects its parameter to be greater than zero, we choose an
open interval between 0 and 6 with 1000 equally spaced values in
between, by using the function bl.oint(). For closed intervals, one
can also use bl.cint(), which acts exactly like the function
linspace from NumPy. To avoid singularities in the probability
values of the observation model, it is however recommended to use
bl.oint() in most cases. Finally, we assign the defined observation
model to our study instance with the method set().

As the parameter boundaries depend on the data at hand, bayesloop will
estimate appropriate parameter values, if one does not provide them:

In [5]:

L = bl.observationModels.Poisson('accident_rate')
S.set(L)

+ Estimated parameter interval for "accident_rate": [0.00749250749251, 7.49250749251] (1000 values).
+ Observation model: Poisson. Parameter(s): ['accident_rate']

Note that you can also use the following short form to define
observation models: L = bl.om.Poisson(). All currently implemented
observation models can be looked up in the API Docs or
directly in observationModels.py. bayesloop further supports all
probability distributions that are included in the
scipy.stats [http://docs.scipy.org/doc/scipy/reference/stats.html]
as well as the
sympy.stats [http://docs.sympy.org/dev/modules/stats.html] module.
See this tutorial for instructions on
how to build custom observation models from arbitrary distributions.

In this example, the observation model only features a single parameter.
If we wanted to model the annual number of accidents with a Gaussian
distribution instead, we have to supply two parameter names (mean
and std) and corresponding values:

L = bl.om.Gaussian('mean', bl.cint(0, 6, 200), 'std', bl.oint(0, 2, 200))
S.set(L)

Again, if we are not sure about parameter boundaries, we may assign
None to one or all parameters, and bayesloop will estimate them:

L = bl.om.Gaussian('mean', None, 'std', bl.oint(0, 2, 200))
S.set(L)

The order has to remain Name, Value, Name, Value, ..., which is why
we cannot simply omit the values and have to write None instead.

Transition model

As the dynamics of many real-world systems are the result of a multitude
of underlying processes that act on different spatial and time scales,
common statistical models with static parameters often miss important
aspects of the systems’ dynamics (see e.g. this
article [http://www.nature.com/articles/ncomms8516]). bayesloop
therefore calls for a second model, the transition model, which
describes the temporal changes of the model parameters.

In this example, we assume that the accident rate itself may change
gradually over time and choose a Gaussian random walk with the standard
deviation \(\sigma=0.2\) as transition model. As for the observation
model, we supply a unique name for hyper-parameter \(\sigma\) (named
sigma) that describes the standard deviation of the parameter
fluctuations and therefore the magnitude of changes. Again, we have to
assign values for sigma, but only choose a single fixed value of
0.2, instead of a whole set of values. This single value can be
optimized, by maximizing the model evidence, see
here. To analyze and compare a set
of different values, one may use an instance of a HyperStudy that is
described in detail here. in this first example,
we simply take the value of 0.2 as given. As the observation model may
contain several parameters, we further have specify the parameter
accident_rate as the target of this transition model.

In [6]:

T = bl.transitionModels.GaussianRandomWalk('sigma', 0.2, target='accident_rate')
S.set(T)

+ Transition model: Gaussian random walk. Hyper-Parameter(s): ['sigma']

Note that you can also use the following short form to define transition
models: T = bl.tm.GaussianRandomWalk(). All currently implemented
transition models can be looked up in the API Docs or
directly in transitionModels.py.

Model fit

At this point, the hierarchical time series model for the coal mining
data set is properly defined and we may continue to perform the model
fit. bayesloop employs a forward-backward algorithm that is based on
Hidden Markov models [http://www.cs.sjsu.edu/~stamp/RUA/HMM.pdf]. It
basically breaks down the high-dimensional inference problem of all time
steps into many low-dimensional ones for each individual time step. The
inference algorithm is implemented by the fit method:

In [7]:

S.fit()

+ Started new fit:
 + Formatted data.
 + Set prior (function): jeffreys. Values have been re-normalized.

 + Finished forward pass.
 + Log10-evidence: -74.63801

 + Finished backward pass.
 + Computed mean parameter values.

By default, fit computes the so-called smoothing distribution of
the model parameters for each time step. This distribution states the
probability (density) of the parameter value at a time step \(t\),
given all past and future data points. All distributions have the same
shape as the parameter grid, and are stored in S.posteriorSequence
for further analysis. Additionally, the mean values of each distribution
are stored in S.posteriorMeanValues, as point estimates. Finally,
the (natural) logarithmic value of the model evidence, the probability
of the data given the chosen model, is stored in S.logEvidence (more
details on evidence values follow).

To simulate an on-line analysis, where at each step in time \(t\),
only past data points are available, one may provide the
keyword-argument forwardOnly=True. In this case, only the
forward-part of the algorithm in run. The resulting parameter
distributions are called filtering distributions.

Plotting

To display the temporal evolution or the distribution of the model
parameters at a certain time step, the Study class provides the
method plot. If no time step is specified, the method displays the
mean values together with the marginal distributions for one parameter
of the model. The parameter to be plotted can be chosen by providing its
name.

Here, we plot the original data (in red) together with the inferred
disaster rate (mean value in black). The marginal parameter distribution
is displayed as a blue overlay, by default with a gamma correction of
\(\gamma=0.5\) to enhance relative differences in the width of the
distribution (this behavior can be changed by the keyword argument
gamma):

In [8]:

plt.figure(figsize=(8, 4))

plot of raw data
plt.bar(S.rawTimestamps, S.rawData, align='center', facecolor='r', alpha=.5)

parameter plot
S.plot('accident_rate')

plt.xlim([1851, 1961])
plt.xlabel('year');

[image: ../_images/tutorials_firststeps_15_0.png]

From this first analysis, we may conclude that before 1880, an average
of \(\approx 3\) accidents per year were recorded. This changes
significantly between 1880 and 1900, when the accident-rate drops to
\(\approx 1\) per year. We can also directly inspect the
distribution of the accident rate at specific points in time, using the
plot method with specified keyword argument t:

In [9]:

plt.figure(figsize=(8, 4))

S.plot('accident_rate', t=1880, facecolor='r', alpha=0.5, label='1880')
S.plot('accident_rate', t=1900, facecolor='b', alpha=0.5, label='1900')

plt.legend()
plt.xlim([0, 5]);

[image: ../_images/tutorials_firststeps_17_0.png]

Without the plot=True argument, this method only returns the
parameter values (r1, r2, as specified when setting the
observation model) as well as the corresponding probability values
p1 and p2. Note that the returned probability values are always
normalized to 1, so that we may easily evaluate the probability of
certain conditions, like the probability of an accident rate < 1 in the
year 1900:

We can further evaluate the probability of certain conditions, for
example the probability that the accident rate was < 1 in the year 1900,
using the eval method:

In [10]:

S.eval('accident_rate < 1', t=1900);

P(accident_rate < 1) = 0.42198256057

For further details on the evaluation of probabilities derived from a
combination of inferred parameters (possibly from different Study
instances), see this tutorial

Saving studies

As the Study class instance (above denoted by S) of a conducted
analysis contains all information about the inferred parameter values,
it may be convenient to store the entire instance S to file. This
way, it can be loaded again later, for example to refine the study,
create different plots or perform further analyses based on the obtained
results. bayesloop provides two functions, bl.save() and
bl.load() to store and retrieve existing studies:

bl.save('file.bl', S)

...

S = bl.load('file.bl)

Model Selection

In Bayesian statistics, an objective model comparison is carried out by
comparing the models’ marginal
likelihood [https://en.wikipedia.org/wiki/Marginal_likelihood]. The
likelihood function describes the probability (density) of the data,
given the parameter values (and thereby the chosen model). By
integrating out (marginalizing) the parameter values, one obtains the
marginal likelihood (also called the model evidence), which directly
measures the fitness of the model at hand. The model evidence represents
a powerful tool for model selection, as it does not assume specific
distributions (e.g. Student’s
t-test [https://en.wikipedia.org/wiki/Student's_t-test] assumes
Gaussian distributed variables) and automatically follows the principle
of Occam’s razor [https://en.wikipedia.org/wiki/Occam's_razor].

The forward-backward algorithm that bayesloop allows to approximate
the model evidence based on the discretized parameter distributions.
Details on this method in the context of Hidden Markov models can be
found here [http://www.cs.sjsu.edu/~stamp/RUA/HMM.pdf].

This section aims at giving a very brief introduction of Bayes factors
together with an example based on the coal mining data and further
introduces combined transition models in bayesloop.

In [1]:

%matplotlib inline
import matplotlib.pyplot as plt # plotting
import seaborn as sns # nicer plots
sns.set_style('whitegrid') # plot styling

import numpy as np
import bayesloop as bl

prepare study for coal mining data
S = bl.Study()
S.loadExampleData()

L = bl.om.Poisson('accident_rate', bl.oint(0, 6, 1000))
S.set(L)

+ Created new study.
+ Successfully imported example data.
+ Observation model: Poisson. Parameter(s): ['accident_rate']

Bayes factors

Instead of interpreting the value of the marginal likelihood for a
single model, it is common to compare two competing models/explanations
\(M_1\) and \(M_2\) by evaluating the Bayes
factor [https://en.wikipedia.org/wiki/Bayes_factor], here denoted as
\(B_{12}\). The Bayes factor is given by the ratio of the two
marginal likelihood values:

\[B_{12} = \frac{p(D|M_1)}{p(D|M_2)}\]

where \(p(D|M_i)\) states the probability of the data (marginal
likelihood) given model \(M_i\). A value of \(B_{12} > 1\)
therefore indicates that the data is better explained by model
\(M_1\), compared to \(M_2\). More detailed information for the
interpretation of the value of Bayes factors can be found
here [https://en.wikipedia.org/wiki/Bayes_factor#Interpretation] and
in the references therein.

As a first example, we investigate whether the inferred disaster rate of
the coal mining data set indeed should be modeled as a time-varying
parameter (a constant rate is an equally valid hypothesis). We first fit
the model using the GaussianRandomWalk transition model with a
standard deviation of \(\sigma = 0.2\) to determine the
corresponding model evidence (on a log scale). Subsequently, we use the
simpler Static transition model (assuming no change of the disaster
rate over time) and compare the resulting model evidence by computing
the Bayes factor. Note that for computational efficiency, the keyword
argument evidenceOnly=True is used, which evaluates the model
evidence, but does not store any results for plotting.

In [2]:

dynamic disaster rate
T = bl.tm.GaussianRandomWalk('sigma', 0.2, target='accident_rate')
S.set(T)
S.fit(evidenceOnly=True)

dynamicLogEvidence = S.log10Evidence

#static disaster rate
T = bl.tm.Static()
S.set(T)
S.fit(evidenceOnly=True)

staticLogEvidence = S.log10Evidence

determine Bayes factor
B = 10**(dynamicLogEvidence - staticLogEvidence)
print '\nBayes factor: B =', B

+ Transition model: Gaussian random walk. Hyper-Parameter(s): ['sigma']
+ Started new fit:
 + Formatted data.
 + Set prior (function): jeffreys. Values have been re-normalized.

 + Finished forward pass.
 + Log10-evidence: -74.59055
+ Transition model: Static/constant parameter values. Hyper-Parameter(s): []
+ Started new fit:
 + Formatted data.
 + Set prior (function): jeffreys. Values have been re-normalized.

 + Finished forward pass.
 + Log10-evidence: -88.00564

Bayes factor: B = 2.60066520417e+13

The computed Bayes factor \(B = 2.6 \cdot 10^{13}\) shows
decisive [https://en.wikipedia.org/wiki/Bayes_factor#Interpretation]
support for the first hypothesis of a dynamic disaster rate.

While this analysis conducted above clearly rules for a time-varying
rate, there may still exist a dynamic model that represents a better fit
than the Gaussian random walk with \(\sigma=0.2\). A very simple
dynamic model is given by the transition model ChangePoint that
assumes an abrupt change of the disaster rate at a predefined point in
time, we choose 1890 here. Note that the transition model
ChangePoint does not need a target parameter, as it is applied
to all parameters of an observation model. We perform a full fit in this
case, as we want to provide a plot of the result.

In [3]:

dynamic disaster rate (change-point model)
T = bl.tm.ChangePoint('tChange', 1890)
S.set(T)
S.fit()

dynamicLogEvidence2 = S.log10Evidence

determine Bayes factor
B = 10**(dynamicLogEvidence2 - dynamicLogEvidence)
print '\nBayes factor: B =', B

plt.figure(figsize=(8, 4))
plt.bar(S.rawTimestamps, S.rawData, align='center', facecolor='r', alpha=.5)
S.plot('accident_rate')
plt.xlim([1851, 1962])
plt.xlabel('year');

+ Transition model: Change-point. Hyper-Parameter(s): ['tChange']
+ Started new fit:
 + Formatted data.
 + Set prior (function): jeffreys. Values have been re-normalized.

 + Finished forward pass.
 + Log10-evidence: -74.41178

 + Finished backward pass.
 + Computed mean parameter values.

Bayes factor: B = 1.50929883739

[image: ../_images/tutorials_modelselection_5_1.png]

The Bayes factor shows support in favor of the new change-point model.
There is a 50% increased probability that the data is generated by the
change-point model, compared to the Gaussian random walk model. Some may
however argue that the value of \(B = 1.5\) indicates only very weak
support and is not worth more than a bare
mention [https://en.wikipedia.org/wiki/Bayes_factor#Interpretation].
Based on the data at hand, no clear decision between the two models can
be made. While the change-point model is favored because it is more
restricted (the number of possible data sets that can be described by
this model is much smaller than for the Gaussian random walk) and
therefore “simpler”, it cannot capture fluctuations of the disaster
rate before and after 1890 like the Gaussian random walk model does.

Combined transition models

The discussion above shows that depending on the data set, different
transition models better explain different aspects of the data. For some
data sets, a satisfactory transition model may only be found by
combining several simple transition models. bayesloop provides a
transition model class called CombinedTransitionModel that can be
supplied with a sequence of transition models that are subsequently
applied at every time step. Here, we combine the change-point model and
the Gaussian random walk model to check whether the combined model
yields a better explanation of the data, compared to the change-point
model alone:

In [4]:

combined model (change-point model + Gaussian random walk)
T = bl.tm.CombinedTransitionModel(bl.tm.ChangePoint('tChange', 1890),
 bl.tm.GaussianRandomWalk('sigma', 0.2, target='accident_rate'))
S.set(T)
S.fit()

combinedLogEvidence = S.log10Evidence

determine Bayes factor
B = 10**(combinedLogEvidence - dynamicLogEvidence2)
print '\nBayes factor: B =', B

plt.figure(figsize=(8, 4))
plt.bar(S.rawTimestamps, S.rawData, align='center', facecolor='r', alpha=.5)
S.plot('accident_rate')
plt.xlim([1851, 1962])
plt.xlabel('year');

+ Transition model: Combined transition model. Hyper-Parameter(s): ['tChange', 'sigma']
+ Started new fit:
 + Formatted data.
 + Set prior (function): jeffreys. Values have been re-normalized.

 + Finished forward pass.
 + Log10-evidence: -74.01460

 + Finished backward pass.
 + Computed mean parameter values.

Bayes factor: B = 2.49563205383

[image: ../_images/tutorials_modelselection_7_1.png]

Again, the refined model is favored by a Bayes factor of
\(B = 2.5\).

Serial transition model

The combined transition models introduced above substantially extend the
number of different transition models. These transition models imply
identical parameter dynamics for all time steps. In many applications,
however, there exist so-called structural breaks when parameter dynamics
exhibit a fundamental change. In contrast to an abrupt change of the
parameter values in case of a change-point, a structural break indicates
an abrupt change of the transition model at a specific point in time.
The class SerialTransitionModel allows to define a sequence of
transition models (including combined transition models) together with a
sequence of time steps that denote the structural breaks. Each
break-point is defined just like any other transition model, containing
a unique name and a time stamp (or an array of possible time stamps, see
this tutorial on change-point studies).
Note, however, that the BreakPoint transition model class can only
be used as a sub-model of an SerialTransitionModel instance.

We use this new class of transition model to explore the idea that the
number of coal mining disasters did not decrease instantaneously, but
instead decreased linearly over the course of a few years. We assume a
static disaster rate until 1885, followed by a deterministic decrease of
0.2 disasters per year (deterministic transition models are defined
easily by custom Python functions, see below) until 1895. Finally, the
disaster rate after the year 1895 is modeled by a Gaussian random walk
of the disaster rate with a standard deviation of \(\sigma=0.1\).
Note that we pass the transition models and the corresponding structural
breaks (time steps) to the SerialTransitionModel in turns. While
this order may increase readability, one can also pass the models first,
followed by the corresponding time steps.

In [5]:

Definition of a linear decrease transition model.
The first argument of any determinsitic model must be the time stamp
and any hyper-parameters of the model are supplied as keyword-arguments.
The hyper-parameter value(s) is/are supplied as default values.
def linear(t, slope=-0.2):
 return slope*t

T = bl.tm.SerialTransitionModel(bl.tm.Static(),
 bl.tm.BreakPoint('t_1', 1885),
 bl.tm.Deterministic(linear, target='accident_rate'),
 bl.tm.BreakPoint('t_2', 1895),
 bl.tm.GaussianRandomWalk('sigma', 0.1, target='accident_rate'))
S.set(T)
S.fit()

serialLogEvidence = S.log10Evidence

determine Bayes factor
B = 10**(serialLogEvidence - combinedLogEvidence)
print '\nBayes factor: B =', B

plt.figure(figsize=(8, 4))
plt.bar(S.rawTimestamps, S.rawData, align='center', facecolor='r', alpha=.5)
S.plot('accident_rate')
plt.xlim([1851, 1962])
plt.xlabel('year');

+ Transition model: Serial transition model. Hyper-Parameter(s): ['slope', 'sigma', 't_1', 't_2']
+ Started new fit:
 + Formatted data.
 + Set prior (function): jeffreys. Values have been re-normalized.

 + Finished forward pass.
 + Log10-evidence: -72.93384

 + Finished backward pass.
 + Computed mean parameter values.

Bayes factor: B = 12.0436384646

[image: ../_images/tutorials_modelselection_9_1.png]

The Bayes factor of the serial model compared to the combined model is
determined to \(B = 12.0\). This value indicates
positive/strong [https://en.wikipedia.org/wiki/Bayes_factor#Interpretation]
evidence in favor of the serial model. Keep in mind, though, that the
time steps of the structural breaks and the slope of the linear decrease
are not inferred in this example, but are instead set by the user. The
determined Bayes factor therefore relies on the assumption that these
values are true, and the uncertainty tied to these values is therefore
not reflected in the value of the Bayes factor. More elaborate studies
that take into account the uncertainty tied to these hyper-parameters
are introduced here and
here.

The iterative approach of creating new hypotheses and comparing them to
the best hypothesis currently available provides an objective and
never-the-less straight-forward way of exploring new data sets. The
subsequent tutorial provides methods to improve upon values for
hyper-parameters that are “blindly” set by the user.

Optimization of hyper-parameters

The model evidence cannot only be used to compare different kinds of
time series models, but also to optimize the hyper-parameters of a given
transition model by maximizing its evidence value. The Study class
of bayesloop contains a method optimize which relies on the
minimize function of the scipy.optimize module. Since
bayesloop has no gradient information about the hyper-parameters, the
optimization routine is based on the
COBYLA [https://en.wikipedia.org/wiki/COBYLA] algorithm. The
following two sections introduce the optimization of hyper-parameters
using bayesloop and further describe how to selectively optimize
specific hyper-parameters in nested transition models.

In [1]:

%matplotlib inline
import matplotlib.pyplot as plt # plotting
import seaborn as sns # nicer plots
sns.set_style('whitegrid') # plot styling

import numpy as np
import bayesloop as bl

prepare study for coal mining data
S = bl.Study()
S.loadExampleData()

L = bl.om.Poisson('accident_rate', bl.oint(0, 6, 1000))
S.set(L)

+ Created new study.
+ Successfully imported example data.
+ Observation model: Poisson. Parameter(s): ['accident_rate']

Global optimization

The optimize method supports all currently implemented transition
models with continuous hyper-parameters, as well as combinations of
multiple models. The change-point model as well as the serial transition
model represent exceptions here, as their parameters tChange and
tBreak, respectively, are discrete. These discrete parameters are
ignored by the optimization routine. See the tutorial on change-point
studies for further information on how to
analyze structural breaks and change-points. By default, all continuous
hyper-parameters of the transition model are optimized. bayesloop
further allows to selectively optimize specific hyper-parameters, see
below. The
parameter values set by the user when defining the transition model are
used as starting values. During optimization, only the log-evidence of
the model is computed. When finished, a full fit is done to provide the
parameter distributions and mean values for the optimal model setting.

We take up the coal mining example again, and stick with the serial
transition model defined
here. This time,
however, we optimize the slope of the linear decrease from 1885 to 1895
and the magnitude of the fluctuations afterwards (i.e. the standard
deviation of the Gaussian random walk):

In [2]:

define linear decrease transition model
def linear(t, slope=-0.2):
 return slope*t

T = bl.tm.SerialTransitionModel(bl.tm.Static(),
 bl.tm.BreakPoint('t_1', 1885),
 bl.tm.Deterministic(linear, target='accident_rate'),
 bl.tm.BreakPoint('t_2', 1895),
 bl.tm.GaussianRandomWalk('sigma', 0.1, target='accident_rate'))
S.set(T)

S.optimize()

plt.figure(figsize=(8, 4))
plt.bar(S.rawTimestamps, S.rawData, align='center', facecolor='r', alpha=.5)
S.plot('accident_rate')
plt.xlim([1851, 1962])
plt.xlabel('year');

+ Transition model: Serial transition model. Hyper-Parameter(s): ['slope', 'sigma', 't_1', 't_2']
+ Starting optimization...
 --> All model parameters are optimized (except change/break-points).
 + Log10-evidence: -72.93384 - Parameter values: [-0.2 0.1]
 + Log10-evidence: -96.81252 - Parameter values: [0.8 0.1]
 + Log10-evidence: -75.18192 - Parameter values: [-0.2 1.1]
 + Log10-evidence: -78.43877 - Parameter values: [-1.19559753 0.00626873]
 + Log10-evidence: -78.80509 - Parameter values: [-0.69779877 0.05313437]
 + Log10-evidence: -85.79404 - Parameter values: [0.04572939 0.05398839]
 + Log10-evidence: -72.76628 - Parameter values: [-0.21058883 0.34977565]
 + Log10-evidence: -73.72301 - Parameter values: [-0.33553394 0.34607154]
 + Log10-evidence: -74.02943 - Parameter values: [-0.08663732 0.3659319]
 + Log10-evidence: -73.17022 - Parameter values: [-0.14861308 0.35785378]
 + Log10-evidence: -72.79393 - Parameter values: [-0.21462789 0.38076353]
 + Log10-evidence: -72.92776 - Parameter values: [-0.27089564 0.33336413]
 + Log10-evidence: -72.76915 - Parameter values: [-0.24074224 0.34156989]
 + Log10-evidence: -72.76679 - Parameter values: [-0.20498306 0.33519087]
 + Log10-evidence: -72.78617 - Parameter values: [-0.20460701 0.35480089]
 + Log10-evidence: -72.75279 - Parameter values: [-0.21791489 0.347062]
 + Log10-evidence: -72.74424 - Parameter values: [-0.21953173 0.33941864]
 + Log10-evidence: -72.74031 - Parameter values: [-0.22648739 0.33586139]
 + Log10-evidence: -72.73350 - Parameter values: [-0.22642717 0.32804913]
 + Log10-evidence: -72.72784 - Parameter values: [-0.22747605 0.32030735]
 + Log10-evidence: -72.72743 - Parameter values: [-0.23183807 0.313826]
 + Log10-evidence: -72.72248 - Parameter values: [-0.22818709 0.31243706]
 + Log10-evidence: -72.71753 - Parameter values: [-0.22205348 0.30759827]
 + Log10-evidence: -72.72569 - Parameter values: [-0.21571672 0.31216781]
 + Log10-evidence: -72.71235 - Parameter values: [-0.22363971 0.2999485]
 + Log10-evidence: -72.70840 - Parameter values: [-0.22123414 0.29251557]
 + Log10-evidence: -72.70418 - Parameter values: [-0.22439552 0.28537129]
 + Log10-evidence: -72.70077 - Parameter values: [-0.22547625 0.2776339]
 + Log10-evidence: -72.70450 - Parameter values: [-0.23171754 0.2729348]
 + Log10-evidence: -72.70076 - Parameter values: [-0.21867277 0.27379362]
 + Log10-evidence: -72.69810 - Parameter values: [-0.22058074 0.27038503]
 + Log10-evidence: -72.69617 - Parameter values: [-0.2224925 0.26697858]
 + Log10-evidence: -72.69482 - Parameter values: [-0.22372428 0.26327162]
 + Log10-evidence: -72.69366 - Parameter values: [-0.22269705 0.25950286]
 + Log10-evidence: -72.69256 - Parameter values: [-0.22373849 0.255738]
 + Log10-evidence: -72.69157 - Parameter values: [-0.2233398 0.25185215]
 + Log10-evidence: -72.69093 - Parameter values: [-0.22465019 0.24817225]
 + Log10-evidence: -72.69026 - Parameter values: [-0.22230095 0.24505137]
 + Log10-evidence: -72.68984 - Parameter values: [-0.22155855 0.24121632]
 + Log10-evidence: -72.69200 - Parameter values: [-0.21792638 0.23977891]
 + Log10-evidence: -72.68976 - Parameter values: [-0.22524306 0.23991896]
 + Log10-evidence: -72.68944 - Parameter values: [-0.2249306 0.23799099]
 + Log10-evidence: -72.68913 - Parameter values: [-0.22449406 0.23608727]
 + Log10-evidence: -72.68891 - Parameter values: [-0.22415052 0.2341646]
 + Log10-evidence: -72.68891 - Parameter values: [-0.22465387 0.23227745]
 + Log10-evidence: -72.68873 - Parameter values: [-0.22367816 0.23223652]
 + Log10-evidence: -72.68886 - Parameter values: [-0.22184677 0.23155776]
 + Log10-evidence: -72.68877 - Parameter values: [-0.22341493 0.23317694]
 + Log10-evidence: -72.68870 - Parameter values: [-0.22323996 0.23202113]
 + Log10-evidence: -72.68870 - Parameter values: [-0.22291326 0.23165823]
 + Log10-evidence: -72.68875 - Parameter values: [-0.22250844 0.23193124]
 + Log10-evidence: -72.68867 - Parameter values: [-0.22322072 0.23127891]
 + Log10-evidence: -72.68866 - Parameter values: [-0.22344227 0.23084378]
 + Log10-evidence: -72.68864 - Parameter values: [-0.22319177 0.23042466]
 + Log10-evidence: -72.68863 - Parameter values: [-0.22300139 0.22997502]
 + Log10-evidence: -72.68862 - Parameter values: [-0.22340318 0.22969756]
 + Log10-evidence: -72.68862 - Parameter values: [-0.22359843 0.22925002]
 + Log10-evidence: -72.68864 - Parameter values: [-0.22362574 0.22979791]
 + Log10-evidence: -72.68862 - Parameter values: [-0.22331126 0.22965818]
 + Log10-evidence: -72.68862 - Parameter values: [-0.22321913 0.22961928]
 + Log10-evidence: -72.68862 - Parameter values: [-0.22312139 0.22959815]
 + Log10-evidence: -72.68862 - Parameter values: [-0.22319968 0.22966534]
 + Log10-evidence: -72.68862 - Parameter values: [-0.22319262 0.22952285]
 + Log10-evidence: -72.68861 - Parameter values: [-0.22320182 0.22942328]
 + Log10-evidence: -72.68861 - Parameter values: [-0.22319833 0.22932334]
 + Log10-evidence: -72.68861 - Parameter values: [-0.22324289 0.22923382]
 + Log10-evidence: -72.68861 - Parameter values: [-0.22322927 0.22913475]
 + Log10-evidence: -72.68861 - Parameter values: [-0.22322709 0.22903477]
 + Log10-evidence: -72.68860 - Parameter values: [-0.22326426 0.22894194]
 + Log10-evidence: -72.68860 - Parameter values: [-0.22322328 0.22885071]
 + Log10-evidence: -72.68860 - Parameter values: [-0.22319605 0.22875449]
 + Log10-evidence: -72.68860 - Parameter values: [-0.22322886 0.22866003]
 + Log10-evidence: -72.68860 - Parameter values: [-0.22321891 0.22856053]
 + Log10-evidence: -72.68860 - Parameter values: [-0.22322983 0.22846113]
 + Log10-evidence: -72.68860 - Parameter values: [-0.22316925 0.22855468]
 + Log10-evidence: -72.68860 - Parameter values: [-0.22324084 0.22846296]
+ Finished optimization.
+ Started new fit:
 + Formatted data.
 + Set prior (function): jeffreys. Values have been re-normalized.

 + Finished forward pass.
 + Log10-evidence: -72.68860

 + Finished backward pass.
 + Computed mean parameter values.

[image: ../_images/tutorials_hyperparameteroptimization_3_1.png]

The optimal value for the standard deviation of the varying disaster
rate is determined to be \(\approx 0.23\), the initial guess of
\(\sigma = 0.1\) is therefore too restrictive. The value of the
slope is only optimized slightly, resulting in an optimal value of
\(\approx -0.22\). The optimal hyper-parameter values are displayed
in the output during optimization, but can also be inspected directly:

In [3]:

print 'slope =', S.getHyperParameterValue('slope')
print 'sigma =', S.getHyperParameterValue('sigma')

slope = -0.223240841019
sigma = 0.228462963962

Conditional optimization in nested transition models

The previous section introduced the optimize method of the Study
class. By default, all (continuous) hyper-parameters of the chosen
transition model are optimized. In some applications, however, only
specific hyper-parameters may be subject to optimization. Therefore, a
list of parameter names (or a single name) may be passed to
optimize, specifying which parameters to optimize. Note that all
hyper-parameters have to be given a unique name. An example for a (quite
ridiculously) nested transition model is defined below. Note that the
deterministic transition models are defined via lambda functions.

In [4]:

T = bl.tm.SerialTransitionModel(bl.tm.CombinedTransitionModel(
 bl.tm.GaussianRandomWalk('early_sigma', 0.05, target='accident_rate'),
 bl.tm.RegimeSwitch('pmin', -7)
),
 bl.tm.BreakPoint('first_break', 1885),
 bl.tm.Deterministic(lambda t, slope_1=-0.2: slope_1*t, target='accident_rate'),
 bl.tm.BreakPoint('second_break', 1895),
 bl.tm.CombinedTransitionModel(
 bl.tm.GaussianRandomWalk('late_sigma', 0.25, target='accident_rate'),
 bl.tm.Deterministic(lambda t, slope_2=0.0: slope_2*t, target='accident_rate')
)
)
S.set(T)

+ Transition model: Serial transition model. Hyper-Parameter(s): ['early_sigma', 'pmin', 'slope_1', 'late_sigma', 'slope_2', 'first_break', 'second_break']

This transition model assumes a combination of gradual and abrupt
changes until 1885, followed by a deterministic decrease of the annual
disaster rate until 1895. Afterwards, the disaster rate is modeled by a
combination of a decreasing trend and random fluctuations. Instead of
discussing exactly how meaningful the proposed transition model really
is, we focus on how to specify different (groups of) hyper-parameters
that we might want to optimize.

All hyper-parameter names occur only once within the transition model
and may simply be stated by their name: S.optimize('pmin'). Note
that you may also pass a single or multiple hyper-parameter(s) as a
list: S.optimize(['pmin']), S.optimize(['pmin', 'slope_2']). For
deterministic models, the argument name also represents the
hyper-parameter name:

In [5]:

S.optimize(['slope_2'])

+ Starting optimization...
 --> Parameter(s) to optimize: ['slope_2']
 + Log10-evidence: -72.78352 - Parameter values: [0.]
 + Log10-evidence: -93.84882 - Parameter values: [1.]
 + Log10-evidence: -80.98325 - Parameter values: [-1.]
 + Log10-evidence: -85.81409 - Parameter values: [-0.5]
 + Log10-evidence: -82.83302 - Parameter values: [0.25]
 + Log10-evidence: -73.27797 - Parameter values: [-0.125]
 + Log10-evidence: -74.00209 - Parameter values: [0.0625]
 + Log10-evidence: -72.56560 - Parameter values: [-0.03125]
 + Log10-evidence: -72.59014 - Parameter values: [-0.0625]
 + Log10-evidence: -72.54880 - Parameter values: [-0.046875]
 + Log10-evidence: -72.59014 - Parameter values: [-0.0625]
 + Log10-evidence: -72.56237 - Parameter values: [-0.0546875]
 + Log10-evidence: -72.54744 - Parameter values: [-0.04296875]
 + Log10-evidence: -72.54976 - Parameter values: [-0.0390625]
 + Log10-evidence: -72.54814 - Parameter values: [-0.04101562]
 + Log10-evidence: -72.54744 - Parameter values: [-0.04394531]
 + Log10-evidence: -72.54752 - Parameter values: [-0.04443359]
 + Log10-evidence: -72.54742 - Parameter values: [-0.04370117]
 + Log10-evidence: -72.54741 - Parameter values: [-0.04345703]
 + Log10-evidence: -72.54742 - Parameter values: [-0.04321289]
 + Log10-evidence: -72.54741 - Parameter values: [-0.04335703]
 + Log10-evidence: -72.54741 - Parameter values: [-0.04355703]
+ Finished optimization.
+ Started new fit:
 + Formatted data.
 + Set prior (function): jeffreys. Values have been re-normalized.

 + Finished forward pass.
 + Log10-evidence: -72.54741

 + Finished backward pass.
 + Computed mean parameter values.

Although the optimization of hyper-parameters helps to objectify the
choice of hyper-parameter values and may even be used to gain new
insights into the dynamics of systems, optimization alone does not
provide any measure of uncertainty tied to the obtained, optimal
hyper-parameter value. The next tutorial discusses
an approach to infer not only the time-varying parameter distributions,
but also the distribution of hyper-parameters.

Hyper-study

The time series models built with the help of bayesloop are called
hierarchical
models [https://en.wikipedia.org/wiki/Bayesian_hierarchical_modeling],
since the parameters of the observation model are in turn controlled by
hyper-parameters that are possibly included in the transition model. In
the previous section, we optimized
two hyper-parameters of a serially combined transition model: the slope
of the decrease in coal mining disasters from 1885 to 1895, and the
magnitude of the fluctuations afterwards. While the optimization routine
yields the most probable values of these hyper-parameters, one might
also be interested in the uncertainty tied to these “optimal” values.
bayesloop therefore provides the HyperStudy class that allows to
compute the full distribution of hyper-parameters by defining a discrete
grid of hyper-parameter values.

While the HyperStudy instance can be configured just like a standard
Study instance, one may supply not only single hyper-parameter
values, but also lists/arrays of values (Note: It will fall back to
the standard fit method if only one combination of hyper-parameter
values is supplied). Here, we test a range on hyper-parameter values by
supplying regularly spaced hyper-parameter values using the cint
function (one can of course also use similar functions like
numpy.linspace [http://docs.scipy.org/doc/numpy/reference/generated/numpy.linspace.html]).
In the example below, we return to the serial transition model used
here and
compute a two-dimensional distribution of the two hyper-parameters
slope (20 steps from -0.4 to 0.0) and sigma (20 steps from 0.0
to 0.8).

After running the fit-method for all value-tuples of the hyper-grid, the
model evidence values of the individual fits are used as weights to
compute weighted average parameter distributions. These average
parameter distributions allow to assess the temporal evolution of the
model parameters, explicitly considering the uncertainty of the
hyper-parameters. However, in case one is only interested in the
hyper-parameter distribution, setting the keyword-argument
evidenceOnly=True of the fit method shortens the computation
time but skips the evaluation of parameter distributions.

Finally, bayesloop provides several methods to plot the results of the
hyper-study. To display the joint distribution of two hyper-parameters,
choose getJointHyperParameterDistribution (or shorter: getJHPD).
The method automatically computes the marginal
distribution [https://en.wikipedia.org/wiki/Marginal_distribution]
for the two specified hyper-parameters and returns three arrays, two for
the hyper-parameters values and one with the corresponding probability
values. Here, the first argument represents a list of two
hyper-parameter names. If the keyword-argument plot=True is set, a
visualization is created using the bar3d function from the
mpl_toolkits.mplot3d [http://matplotlib.org/mpl_toolkits/mplot3d/tutorial.html]
module.

In [1]:

%matplotlib inline
import matplotlib.pyplot as plt # plotting
import seaborn as sns # nicer plots
sns.set_style('whitegrid') # plot styling

import numpy as np
import bayesloop as bl

S = bl.HyperStudy()
S.loadExampleData()

L = bl.om.Poisson('accident_rate', bl.oint(0, 6, 1000))

T = bl.tm.SerialTransitionModel(bl.tm.Static(),
 bl.tm.BreakPoint('t_1', 1885),
 bl.tm.Deterministic(lambda t, slope=bl.cint(-0.4, 0, 20): slope*t,
 target='accident_rate'),
 bl.tm.BreakPoint('t_2', 1895),
 bl.tm.GaussianRandomWalk('sigma', bl.cint(0, 0.8, 20),
 target='accident_rate'))
S.set(L, T)

S.fit()
S.getJointHyperParameterDistribution(['slope', 'sigma'], plot=True, color=[0.1, 0.8, 0.1])

plt.xlim([-0.5, 0.1])
plt.ylim([-0.1, 0.9]);

+ Created new study.
 --> Hyper-study
+ Successfully imported example data.
+ Observation model: Poisson. Parameter(s): ['accident_rate']
+ Transition model: Serial transition model. Hyper-Parameter(s): ['slope', 'sigma', 't_1', 't_2']
+ Set hyper-prior(s): ['uniform', 'uniform', 'uniform', 'uniform']
+ Started new fit.
 + 400 analyses to run.

 + Computed average posterior sequence
 + Computed hyper-parameter distribution
 + Log10-evidence of average model: -73.47969
 + Computed local evidence of average model
 + Computed mean parameter values.
+ Finished fit.

[image: ../_images/tutorials_hyperstudy_1_1.png]

It is important to note here, that the evidence value of
\(\approx 10^{-73.5}\) is smaller compared to the value of
\(\approx 10^{-72.7}\) obtained in a previous analysis
here. There,
we optimized the hyper-parameter values and assumed that these optimal
values are not subject to uncertainty, therefore over-estimating the
model evidence. In contrast, the hyper-study explicitly considers the
uncertainty tied to the hyper-parameter values.

While the joint distribution of two hyper-parameters may uncover
possible correlations between the two quantities, the 3D plot is often
difficult to integrate into existing figures. To plot the marginal
distribution of a single hyper-parameter in a simple 2D histogram/bar
plot, use the plot method, just as for the parameters of the
observation model:

In [2]:

plt.figure(figsize=(16,4))
plt.subplot(121)
S.plot('slope', color='g', alpha=.8);

plt.subplot(122)
S.plot('sigma', color='g', alpha=.8);

[image: ../_images/tutorials_hyperstudy_3_0.png]

Finally, the temporal evolution of the model parameter may be displayed
using, again, the plot method:

In [3]:

plt.figure(figsize=(8, 4))
plt.bar(S.rawTimestamps, S.rawData, align='center', facecolor='r', alpha=.5)
S.plot('accident_rate')
plt.xlim([1851, 1962])
plt.xlabel('year');

[image: ../_images/tutorials_hyperstudy_5_0.png]

In principle, a HyperStudy could also be used to test different time
stamps for change- and break-points. However, in a transition model with
several change- or break-points, the correct order has to be maintained.
Since a HyperStudy fits all possible combinations of hyper-parameter
values, we need another type of study that takes care of the correct
order of change-/break-points, the ChangepointStudy class. It is
introduced in the next tutorial.

Change-point study

Change point
analysis [http://www.variation.com/cpa/tech/changepoint.html] or
change detection [https://en.wikipedia.org/wiki/Change_detection]
deals with abrupt changes in statistical properties of time series.
bayesloop includes two types abrupt changes: an abrupt change in
parameter values is modeled by the transition model Changepoint. In
contrast to this change in value, the transition model itself may change
at specific points in time, which we will refer to as structural
breaks. These structural changes are implemented using the
SerialTransitionModel class. The following two sections introduce
the ChangepointStudy class and describe its usage to analyze both
change-points and structural breaks in time series data.

In [1]:

%matplotlib inline
import matplotlib.pyplot as plt # plotting
import seaborn as sns # nicer plots
sns.set_style('whitegrid') # plot styling

import bayesloop as bl
import numpy as np

Analyzing abrupt changes of parameter values

The ChangepointStudy class represents an extention of the
HyperStudy introduced above and provides an easy-to-use interface to
conduct change-point studies. By calling the fit method, this type
of study first analyzes the defined transition model and detects all
instances of the Changepoint class. Instead of directly using all
combinations of predefined change-points provided by the user, it then
computes a list of all valid combinations of change-point times and fits
them (basically preventing the double-counting of change-point times due
to reversed order). With Bayesian evidence as an objective fitness
measure, this type of study can be used to answer the general question
of when changes have happened. Furthermore, we may compute a
distribution of change-point times to assess the (un-)certainty of these
points in time.

Note: For simple change-point analyses with only one
change-/break-point or multiple change-/break-points which do not
“overlap”, using the HyperStudy class is sufficient, too.

Analysis of a single change-point

In a first example, we assume a single change-point in our data set of
coal mining disasters. Using the ChangepointStudy, we iterate over
all possible time steps using the change-point model. After processing
all time steps, the probability distribution of the change-point as well
as an average model are computed. This study may also be carried out
using MCMC methods, see e.g. the PyMC
tutorial [https://pymc-devs.github.io/pymc/tutorial.html] for
comparison.

The change-point study is set up as shown below. Note that we supply the
value 'all' to the change-point hyper-parameter 'tChange',
indicating that all possible time steps are considered as a
change-point. One could of course also provide a list of possible
candidate time steps.

In [2]:

S = bl.ChangepointStudy()
S.loadExampleData()

L = bl.om.Poisson('accident_rate', bl.oint(0, 6, 1000))
T = bl.tm.ChangePoint('change_point', 'all')

S.set(L, T)
S.fit()

+ Created new study.
 --> Hyper-study
 --> Change-point analysis
+ Successfully imported example data.
+ Observation model: Poisson. Parameter(s): ['accident_rate']
+ Transition model: Change-point. Hyper-Parameter(s): ['change_point']
+ Detected 1 change-point(s) in transition model: ['change_point']
+ Set hyper-prior(s): ['uniform']
+ Started new fit.
 + 109 analyses to run.

 + Computed average posterior sequence
 + Computed hyper-parameter distribution
 + Log10-evidence of average model: -75.71555
 + Computed local evidence of average model
 + Computed mean parameter values.
+ Finished fit.

After all fits are completed, we can plot the change-point distribution,
by using the usual plot method. We may further use the eval
method to draw quantitative conclusions from the change-point
distribution:

In [3]:

plt.figure(figsize=(8, 4))

S.plot('change_point', color='g', alpha=.8)

plt.xlim([1875, 1905])
plt.xlabel('year')

p1 = S.eval('change_point < 1887')
p2 = S.eval('change_point > 1893')

compute probability of change-point between 1887 and 1893
print('Probability of change-point between 1887 and 1893: {}'.format(1.-p1-p2))

P(change_point < 1887) = 0.099250764569
P(change_point > 1893) = 0.0616571951525
Probability of change-point between 1887 and 1893: 0.839092040278

[image: ../_images/tutorials_changepointstudy_5_1.png]

From this distribution, we may conclude that a change in safety
conditions of coal mines in the UK happened during the seven-year
interval from 1887 to 1893 with a probability of \(\approx 84\%\).

bayesloop further weighs all fitted models by their probability from
the change-point distribution and subsequently adds them up, resulting
in an average model, which is stored in S.posteriorSequence and
S.posteriorMeanValues. Additionally, the log-evidence of the average
model is set by the weighted sum of all log-evidence values. These
results can be plotted as before, using plot:

In [4]:

plt.figure(figsize=(8, 4))
plt.bar(S.rawTimestamps, S.rawData, align='center', facecolor='r', alpha=.5)
S.plot('accident_rate')
plt.xlim([1851, 1962])
plt.xlabel('year');

[image: ../_images/tutorials_changepointstudy_7_0.png]

Exploring possible change-points

The change-point study described above explicitly assumes the existence
of a single change-point in the data set. Without any prior knowledge
about the data, however, this assumption can rarely be made with
certainty as the number of potential change-points is often unknown.

In order to explore possible change-points without prior knowledge,
bayesloop includes the transition model RegimeSwitch, which
assigns a minimal probability (specified on a log10-scale by
log10pMin, relative to the probability value of a flat distribution)
to all parameter values on the parameter grid at every time step. This
model allows for abrupt parameter changes only, and neglects gradually
varying parameter dynamics. Note that no ChangepointStudy is needed
for this kind of analysis, the “standard” Study class is
sufficient.

For the coal mining example, the results from the regime-switching model
with a minimal probability of \(10^{-7}\) resemble the average model
of the change-point study:

In [5]:

S = bl.Study()
S.loadExampleData()

L = bl.om.Poisson('accident_rate', bl.oint(0, 6, 1000))
T = bl.tm.RegimeSwitch('log10pMin', -7)

S.set(L, T)
S.fit()

plt.figure(figsize=(8, 4))
plt.bar(S.rawTimestamps, S.rawData, align='center', facecolor='r', alpha=.5)
S.plot('accident_rate')
plt.xlim([1851, 1962])
plt.xlabel('year');

+ Created new study.
+ Successfully imported example data.
+ Observation model: Poisson. Parameter(s): ['accident_rate']
+ Transition model: Regime-switching model. Hyper-Parameter(s): ['log10pMin']
+ Started new fit:
 + Formatted data.
 + Set prior (function): jeffreys. Values have been re-normalized.

 + Finished forward pass.
 + Log10-evidence: -80.63781

 + Finished backward pass.
 + Computed mean parameter values.

[image: ../_images/tutorials_changepointstudy_9_1.png]

Analysis of multiple change-points

Suppose the regime-switching process introduced above indicates two
distinct change-points in a data set. In this case, the
ChangepointStudy class can be used together with a
CombinedTransitionModel to perform a comprehensive analysis assuming
two change-points. The combined transition model here simply consists of
two instances of the ChangePoint model. We use the example below to
investigate possible change-points in the disaster rate after the
significant decrease at the end of the 19th century, i.e. restricting
the data set to the time after 1900. Note that the ChangepointStudy
will only consider combinations of change-points that are in ascending
temporal order, i.e. the second change-point must occur after the first
one.

After all fits are done, the resulting joint change-point distribution
can be plotted using the getJointHyperParameterDistribution
(getJHPD) method (similar to plotting the joint distribution of a
hyper-study).

In [6]:

S = bl.ChangepointStudy()
S.loadExampleData()

mask = S.rawTimestamps > 1900 # select timestamps greater than the year 1900
S.rawTimestamps = S.rawTimestamps[mask]
S.rawData = S.rawData[mask]

L = bl.om.Poisson('accident_rate', bl.oint(0, 6, 1000))
T = bl.tm.CombinedTransitionModel(bl.tm.ChangePoint('t_1', 'all'),
 bl.tm.ChangePoint('t_2', 'all'))

S.set(L, T)
S.fit()

S.getJHPD(['t_1', 't_2'], plot=True, color=[0.1, 0.8, 0.1])
plt.xlim([1899, 1962])
plt.ylim([1899, 1962])

set proper view-point
ax = plt.gca()
ax.view_init(elev=35, azim=150)

+ Created new study.
 --> Hyper-study
 --> Change-point analysis
+ Successfully imported example data.
+ Observation model: Poisson. Parameter(s): ['accident_rate']
+ Transition model: Combined transition model. Hyper-Parameter(s): ['t_1', 't_2']
+ Detected 2 change-point(s) in transition model: ['t_1', 't_2']
+ Set hyper-prior(s): ['uniform', 'uniform']
+ Started new fit.
 + 1770 analyses to run.

 + Computed average posterior sequence
 + Computed hyper-parameter distribution
 + Log10-evidence of average model: -34.85781
 + Computed local evidence of average model
 + Computed mean parameter values.
+ Finished fit.

[image: ../_images/tutorials_changepointstudy_11_1.png]

Instead of focusing on the exact time steps of the change-points, some
applications may call for the analysis of the time interval between two
change-points. The ChangepointStudy class provides a method called
getDurationDistribution which computes the probabilities of
different time intervals between two change-points and optionally plots
them in a bar graph. Based on the example above, the resulting
“duration distribution” is shown below:

In [7]:

plt.figure(figsize=(8, 4))
S.getDurationDistribution(['t_1', 't_2'], plot=True, color='g', alpha=.8)
plt.xlim([0, 62]);

[image: ../_images/tutorials_changepointstudy_13_0.png]

Finally, we plot the averaged parameter evolution of the
two-change-point model. From the duration distribution as well as from
the temporal evolution of the inferred disaster rate we may conclude
that there is indeed a time period with a slightly increased disaster
rate, which begins in \(\approx\) 1930 and ends in \(\approx\)
1945. The duration distribution underlines this finding with high
probability values for durations up to 20 years.

In [8]:

plt.figure(figsize=(8, 4))
plt.bar(S.rawTimestamps, S.rawData, align='center', facecolor='r', alpha=.5)
S.plot('accident_rate')
plt.xlim([1901, 1961])
plt.xlabel('year');

[image: ../_images/tutorials_changepointstudy_15_0.png]

Analyzing structural breaks in time series models

In contrast to a pure change in parameter value, the whole type of
parameter dynamics may change at a given point in time. We will use the
term structural break to describe such events. We have already
investigated so-called serial transition models that describe parameter
dynamics which change from time to time. While these serial transition
models are a re-occurring topic in this tutorial (see
here,
here and
here), the times at which the structural breaks
happen have - up to this point - always been user-defined and fixed.
This restriction can be lifted by the ChangepointStudy class. If a
SerialTransitionModel is defined within the change-point study, all
structural breaks will be treated as variables and the fit method
will iterate over all possible combinations, just as with “normal”
change-points.

In this section, our goal is to build a model to determine how long it
took for the disaster rate to decrease from \(\approx\) 3 disasters
per year to only \(\approx\) 1 per year. This kind of study may
generally be applied to assess the effectivity of policies like safety
regulations. Here, we devise a simple serial transition model that
consists of three phases to describe the change in the annual number of
coal mining disasters: in the first and the last phase, we assume a
constant disaster rate, while the intermediate phase is modeled by a
linear decrease of the disaster rate. By providing multiple values for
the slope of the intermediate phase, we can combine the advantages of
both hyper- and change-point study in order to consider the uncertainty
of the change-points and the uncertainty of the slope of the
intermediate phase. We restrict the data set to the years from 1870 to
1910, and assume an improvement of the disaster rate by 0 to 2.0
disasters per year.

*Note: The following analysis consists of ~25000 individual model
fits. It may take several minutes to complete.*

In [9]:

S.loadExampleData()

mask = (S.rawTimestamps >= 1870)*(S.rawTimestamps <= 1910) # restrict analysis to 1870-1910
S.rawTimestamps = S.rawTimestamps[mask]
S.rawData = S.rawData[mask]

T = bl.tm.SerialTransitionModel(bl.tm.Static(),
 bl.tm.BreakPoint('t_1', 'all'),
 bl.tm.Deterministic(lambda t, slope=np.linspace(-2.0, 0.0, 30): t*slope,
 target='accident_rate'),
 bl.tm.BreakPoint('t_2', 'all'),
 bl.tm.Static()
)

S.set(T)
S.fit()

S.getJHPD(['t_1', 't_2'], plot=True, color=[0.1, 0.8, 0.1])
plt.xlim([1869, 1911])
plt.ylim([1869, 1911])

set proper view-point
ax = plt.gca()
ax.view_init(elev=35, azim=125)

+ Successfully imported example data.
+ Transition model: Serial transition model. Hyper-Parameter(s): ['slope', 't_1', 't_2']
+ Detected 2 break-point(s) in transition model: ['t_1', 't_2']
+ Set hyper-prior(s): ['uniform', 'uniform', 'uniform']
+ Started new fit.
 + 23400 analyses to run.
 ! WARNING: Posterior distribution contains only zeros, check parameter boundaries!
 Stopping inference process. Setting model evidence to zero.

 + Computed average posterior sequence
 + Computed hyper-parameter distribution
 + Log10-evidence of average model: -30.63948
 + Computed local evidence of average model
 + Computed mean parameter values.
+ Finished fit.

[image: ../_images/tutorials_changepointstudy_17_1.png]

Apart from this rather non-intuitive joint distribution of the two
structural break times, we can also plot the marginal distribution of
the inferred slope of the intermediate phase:

In [10]:

plt.figure(figsize=(8,4))
S.plot('slope', color='g', alpha=.8)
plt.xlim([-2.1, 0.1]);

[image: ../_images/tutorials_changepointstudy_19_0.png]

The plot above indicates that the decrease of the disaster rate is
indeed a gradual process, as high probabilities are assigned to rather
small slopes with an absolute value < 0.5. However, there is still a
significant probability of slopes with an absolute value that is larger
than 0.5:

In [11]:

S.eval('abs(slope) > 0.5');

P(abs(slope) > 0.5) = 0.29265010301

More intuitive than the slope is the duration between the two structural
breaks. This period of time directly measures the time it takes for the
disaster rate to decrease from three to one disaster per year. The plot
below shows the distribution for this period of time:

In [12]:

plt.figure(figsize=(8,4))
d, p = S.getDurationDistribution(['t_1', 't_2'], plot=True, color='g', alpha=.8)
plt.xlim([-0.5, 40.5]);

[image: ../_images/tutorials_changepointstudy_23_0.png]

From this plot, we see that the period between the two structural breaks
cannot be inferred with great accuracy. The accuracy may be improved by
extending the simple serial model used in this example or by
incorporating more data points (only 40 data points have been used
here). We may still conclude that this analysis indicates an
intermediate phase of improvement that is shorter than 15 years, with a
probability of \(\approx 70\%\):

In [13]:

np.sum(p[np.abs(d) < 15])

Out[13]:

0.71545710930129347

The results from the break-point analysis are further illustrated by the
temporal evolution of the inferred disaster rate. Below, the average
model of the complete analysis is used to display the inferred changes
in the disaster rate:

In [14]:

plt.figure(figsize=(8, 4))
plt.bar(S.rawTimestamps, S.rawData, align='center', facecolor='r', alpha=.5)
S.plot('accident_rate')
plt.xlim([1870, 1910])
plt.xlabel('year');

[image: ../_images/tutorials_changepointstudy_27_0.png]

Finally, we want to stress the difference between change-points and
break-points again: If the BreakPoint transition model is used
within the SerialTransitionModel class, different transition models
will be specified before and after the break-point, but the parameter
values will not be reset at the break-point. In contrast, the
ChangePoint transition model can also be used in a
SerialTransitionModel (not shown in this tutorial). In addition to
the different parameter dynamics before and after the change-point, this
case allows for an abrupt change of the parameter values. Finally, if
the ChangePoint model is used without a SerialTransitionModel,
the parameter dynamics will stay the same before and after the
change-point, but an abrupt change of the parameter values is expected.

Online study

All study types of bayesloop introduced so far are used for
retrospective data analysis, i.e. the complete data set is already
available at the time of the analysis. Many applications, however, from
algorithmic trading to the monitoring of heart function or blood sugar
levels call for on-line analysis methods that can take into account new
information as it arrives from external sources. For this purpose,
bayesloop provides the class OnlineStudy, which enables the
inference of time-varying parameters in a sequential fashion, much like
a particle filter [https://en.wikipedia.org/wiki/Particle_filter].
In contrast to particle filters, the OnlineStudy can account for
different scenarios of parameter dynamics (i.e. different transition
models) and can apply on-line model selection to objectively determine
which scenario is more likely to describe the current data point, or all
past data points.

In this case, we avoid constructing some artificial usage example and
directly point the reader at this case study on stock market
fluctuations. In this
detailed example, we investigate the intra-day price fluctuations of the
exchange-traded fund SPY. Based on two different transition models, one
for normal market function and a second one for chaotic market
fluctuations, we identify price corrections that are induced by news
announcements of economic indicators.

Prior distributions

One important aspect of Bayesian inference has not yet been discussed in
this tutorial: prior
distributions [https://en.wikipedia.org/wiki/Prior_probability]. In
Bayesian statistics, one has to provide probability (density) values for
every possible parameter value before taking into account the data at
hand. This prior distribution thus reflects all prior knowledge of the
system that is to be investigated. In the case that no prior knowledge
is available, a non-informative prior in the form of the so-called
Jeffreys prior [https://en.wikipedia.org/wiki/Jeffreys_prior] allows
to minimize the effect of the prior on the results. The next two
sub-sections discuss how one can set custom prior distributions for the
parameters of the observation model and for hyper-parameters in a
hyper-study or change-point study.

In [1]:

%matplotlib inline
import matplotlib.pyplot as plt # plotting
import seaborn as sns # nicer plots
sns.set_style('whitegrid') # plot styling

import numpy as np
import bayesloop as bl

prepare study for coal mining data
S = bl.Study()
S.loadExampleData()

+ Created new study.
+ Successfully imported example data.

Parameter prior

bayesloop employs a forward-backward algorithm that is based on
Hidden Markov models [http://www.cs.sjsu.edu/~stamp/RUA/HMM.pdf].
This inference algorithm iteratively produces a parameter distribution
for each time step, but it has to start these iterations from a
specified probability distribution - the parameter prior. All built-in
observation models already have a predefined prior, stored in the
attribute prior. Here, the prior distribution is stored as a Python
function that takes as many arguments as there are parameters in the
observation model. The prior distributions can be looked up directly
within observationModels.py. For the Poisson model discussed in
this tutorial, the default prior distribution is defined in a method
called jeffreys as

def jeffreys(x):
 return np.sqrt(1. / x)

corresponding to the non-informative Jeffreys prior,
\(p(\lambda) \propto 1/\sqrt{\lambda}\). This type of prior can also
be determined automatically for arbitrary user-defined observation
models, see
here.

Prior functions and arrays

To change the predefined prior of a given observation model, one can add
the keyword argument prior when defining an observation model. There
are different ways of defining a parameter prior in bayesloop: If
prior=None is set, bayesloop will assign equal probability to all
parameter values, resulting in a uniform prior distribution within the
specified parameter boundaries. One can also directly supply a Numpy
array with prior probability (density) values. The shape of the array
must match the shape of the parameter grid! Another way to define a
custom prior is to provide a function that takes exactly as many
arguments as there are parameters in the defined observation model.
bayesloop will then evaluate the function for all parameter values and
assign the corresponding probability values.

Note: In all of the cases described above, bayesloop will
re-normalize the provided prior values, so they do not need to be passed
in a normalized form. Below, we describe the possibility of using
probability distributions from the SymPy stats module as prior
distributions, which are not re-normalized by bayesloop.

Next, we illustrate the difference between the Jeffreys prior and a
flat, uniform prior with a very simple inference example: We fit the
coal mining example data set using the Poisson observation model and
further assume the rate parameter to be static:

In [2]:

we assume a static rate parameter for simplicity
S.set(bl.tm.Static())

print 'Fit with built-in Jeffreys prior:'
S.set(bl.om.Poisson('accident_rate', bl.oint(0, 6, 1000)))
S.fit()
jeffreys_mean = S.getParameterMeanValues('accident_rate')[0]
print('-----\n')

print 'Fit with custom flat prior:'
S.set(bl.om.Poisson('accident_rate', bl.oint(0, 6, 1000),
 prior=lambda x: 1.))
alternatives: prior=None, prior=np.ones(1000)
S.fit()
flat_mean = S.getParameterMeanValues('accident_rate')[0]

+ Transition model: Static/constant parameter values. Hyper-Parameter(s): []
Fit with built-in Jeffreys prior:
+ Observation model: Poisson. Parameter(s): ['accident_rate']
+ Started new fit:
 + Formatted data.
 + Set prior (function): jeffreys. Values have been re-normalized.

 + Finished forward pass.
 + Log10-evidence: -88.00564

 + Finished backward pass.
 + Computed mean parameter values.

Fit with custom flat prior:
+ Observation model: Poisson. Parameter(s): ['accident_rate']
+ Started new fit:
 + Formatted data.
 + Set prior (function): <lambda>. Values have been re-normalized.

 + Finished forward pass.
 + Log10-evidence: -87.98915

 + Finished backward pass.
 + Computed mean parameter values.

First note that the model evidence indeed slightly changes due to the
different choices of the parameter prior. Second, one may notice that
the posterior mean value of the flat-prior-fit does not exactly match
the arithmetic mean of the data. This small deviation shows that a
flat/uniform prior is not completely non-informative for a Poisson
model! The fit using the Jeffreys prior, however, succeeds in
reproducing the frequentist estimate, i.e. the arithmetic mean:

In [3]:

print('arithmetic mean = {}'.format(np.mean(S.rawData)))
print('flat-prior mean = {}'.format(flat_mean))
print('Jeffreys prior mean = {}'.format(jeffreys_mean))

arithmetic mean = 1.69090909091
flat-prior mean = 1.7
Jeffreys prior mean = 1.69090909091

SymPy prior

The second option is based on the
SymPy [http://www.sympy.org/en/index.html] module that introduces
symbolic mathematics to Python. Its sub-module
sympy.stats [http://docs.sympy.org/dev/modules/stats.html] covers a
wide range of discrete and continuous random variables. The keyword
argument prior also accepts a list of sympy.stats random
variables, one for each parameter (if there is only one parameter, the
list can be omitted). The multiplicative joint probability density of
these random variables is then used as the prior distribution. The
following example defines an exponential prior for the Poisson
model, favoring small values of the rate parameter:

In [4]:

import sympy.stats
S.set(bl.om.Poisson('accident_rate', bl.oint(0, 6, 1000),
 prior=sympy.stats.Exponential('expon', 1)))
S.fit()

+ Observation model: Poisson. Parameter(s): ['accident_rate']
+ Started new fit:
 + Formatted data.
 + Set prior (sympy): exp(-x)

 + Finished forward pass.
 + Log10-evidence: -87.94640

 + Finished backward pass.
 + Computed mean parameter values.

Note that one needs to assign a name to each sympy.stats variable.
In this case, the output of bayesloop shows the mathematical formula
that defines the prior. This is possible because of the symbolic
representation of the prior by SymPy.

Note: The support interval of a prior distribution defined via SymPy
can deviate from the parameter interval specified in bayesloop. In the
example above, we specified the parameter interval]0, 6[, while the
exponential prior has the support]0, \(\infty\)[. SymPy priors
are not re-normalized with respect to the specified parameter interval.
Be aware that the resulting model evidence value will only be correct if
no parameter values outside of the parameter boundaries gain significant
probability values. In most cases, one can simply check whether the
parameter distribution has sufficiently fallen off at the parameter
boundaries.

Hyper-parameter priors

As shown before, hyper-studies and change-point
studies can be used to determine the full
distribution of hyper-parameters (the parameters of the transition
model). As for the time-varying parameters of the observation model, one
might have prior knowledge about the values of certain hyper-parameters
that can be included into the study to refine the resulting distribution
of these hyper-parameters. Hyper-parameter priors can be defined just as
regular priors, either by an arbitrary function or by a list of
sympy.stats random variables.

In a first example, we return to the simple change-point model of the
coal-mining data set and perform to fits of the change-point: first, we
specify no hyper-prior for the time step of our change-point, assuming
equal probability for each year in our data set. Second, we define a
Normal distribution around the year 1920 with a (rather unrealistic)
standard deviation of 5 years as the hyper-prior using a SymPy random
variable. For both fits, we plot the change-point distribution to show
the differences induced by the different priors:

In [5]:

print 'Fit with flat hyper-prior:'
S = bl.ChangepointStudy()
S.loadExampleData()

L = bl.om.Poisson('accident_rate', bl.oint(0, 6, 1000))
T = bl.tm.ChangePoint('tChange', 'all')

S.set(L, T)
S.fit()

plt.figure(figsize=(8,4))
S.plot('tChange', facecolor='g', alpha=0.7)
plt.xlim([1870, 1930])
plt.show()
print('-----\n')

print 'Fit with custom normal prior:'
T = bl.tm.ChangePoint('tChange', 'all', prior=sympy.stats.Normal('norm', 1920, 5))
S.set(T)
S.fit()

plt.figure(figsize=(8,4))
S.plot('tChange', facecolor='g', alpha=0.7)
plt.xlim([1870, 1930]);

Fit with flat hyper-prior:
+ Created new study.
 --> Hyper-study
 --> Change-point analysis
+ Successfully imported example data.
+ Observation model: Poisson. Parameter(s): ['accident_rate']
+ Transition model: Change-point. Hyper-Parameter(s): ['tChange']
+ Detected 1 change-point(s) in transition model: ['tChange']
+ Set hyper-prior(s): ['uniform']
+ Started new fit.
 + 109 analyses to run.

 + Computed average posterior sequence
 + Computed hyper-parameter distribution
 + Log10-evidence of average model: -75.71555
 + Computed local evidence of average model
 + Computed mean parameter values.
+ Finished fit.

[image: ../_images/tutorials_priordistributions_9_1.png]

Fit with custom normal prior:
+ Transition model: Change-point. Hyper-Parameter(s): ['tChange']
+ Detected 1 change-point(s) in transition model: ['tChange']
+ Set hyper-prior(s): ['sqrt(2)*exp(-(x - 1920)**2/50)/(10*sqrt(pi))']
+ Started new fit.
 + 109 analyses to run.

 + Computed average posterior sequence
 + Computed hyper-parameter distribution
 + Log10-evidence of average model: -80.50692
 + Computed local evidence of average model
 + Computed mean parameter values.
+ Finished fit.

[image: ../_images/tutorials_priordistributions_9_3.png]

Since we used a quite narrow prior (containing a lot of information) in
the second case, the resulting distribution is strongly shifted towards
the prior. The following example revisits the two break-point-model from
here
and a linear decrease with a varying slope as a hyper-parameter. Here,
we define a Gaussian prior for the slope hyper-parameter, which is
centered around the value -0.2 with a standard deviation of 0.4, via a
lambda-function. For simplification, we set the break-points to fixed
years.

In [6]:

S = bl.HyperStudy()
S.loadExampleData()

L = bl.om.Poisson('accident_rate', bl.oint(0, 6, 1000))
T = bl.tm.SerialTransitionModel(bl.tm.Static(),
 bl.tm.BreakPoint('t_1', 1880),
 bl.tm.Deterministic(lambda t, slope=np.linspace(-2.0, 0.0, 30): t*slope,
 target='accident_rate',
 prior=lambda slope: np.exp(-0.5*((slope + 0.2)/(2*0.4))**2)/0.4),
 bl.tm.BreakPoint('t_2', 1900),
 bl.tm.Static()
)

S.set(L, T)
S.fit()

+ Created new study.
 --> Hyper-study
+ Successfully imported example data.
+ Observation model: Poisson. Parameter(s): ['accident_rate']
+ Transition model: Serial transition model. Hyper-Parameter(s): ['slope', 't_1', 't_2']
+ Set hyper-prior(s): ['<lambda> (re-normalized)', 'uniform', 'uniform']
+ Started new fit.
 + 30 analyses to run.

 + Computed average posterior sequence
 + Computed hyper-parameter distribution
 + Log10-evidence of average model: -74.84129
 + Computed local evidence of average model
 + Computed mean parameter values.
+ Finished fit.

Finally, note that you can mix SymPy- and function-based hyper-priors
for nested transition models.

Custom observation models

While bayesloop provides a number of observation models like
Poisson or AR1, many applications call for different
distributions, possibly with some parameters set to fixed values (e.g.
with a mean value set to zero). The
sympy.stats [http://docs.sympy.org/dev/modules/stats.html] and the
scipy.stats [http://docs.scipy.org/doc/scipy/reference/stats.html]
modules include a large number of continuous as well as discrete
probability distributions. The observation model classes SciPy and
SymPy allow to create observation models to be used in bayesloop
studies on-the-fly, just by passing the desired scipy.stats
distribution (and setting values for fixed parameters, if necessary), or
by providing a sympy.stats random variable, respectively. Note that
these classes can only be used to model statistically independent
observations.

In cases where neither scipy.stats nor sympy.stats provide the
needed model, one can further define a custom observation model by
stating a likelihood function in terms of arbitrary
NumPy [http://www.numpy.org/] functions, using the NumPy class.

Sympy.stats random variables

The SymPy [http://www.sympy.org/en/index.html] module introduces
symbolic mathematics to Python. Its sub-module
sympy.stats [http://docs.sympy.org/dev/modules/stats.html] covers a
wide range of discrete and continuous random variables. In the
following, we re-define the observation model of the coal mining study
S defined above, but this time use the sympy.stats version of
the Poisson distribution:

In [1]:

import bayesloop as bl
import numpy as np
import sympy.stats
from sympy import Symbol

rate = Symbol('lambda', positive=True)
poisson = sympy.stats.Poisson('poisson', rate)

L = bl.om.SymPy(poisson, 'lambda', bl.oint(0, 6, 1000))

 + Trying to determine Jeffreys prior. This might take a moment...
 + Successfully determined Jeffreys prior: 1/sqrt(lambda). Will use corresponding lambda function.

First, we specify the only parameter of the Poisson distribution
(denoted \(\lambda\)) symbolically as a positive real number. Note
that providing the keyword argument positive=True is important for
SymPy to define the Poisson distribution correctly (not setting the
keyword argument correctly results in a error). Having defined the
parameter, a random variable based on the Poisson distribution is
defined. This random variable is then passed to the SymPy class of
the bayesloop observation models. Just as for the built-in observation
models of bayesloop, one has to specify the parameter names and values
(in this case, lambda is the only parameter).

Note that upon creating an instance of the observation model,
bayesloop automatically determines the correct Jeffreys
prior [https://en.wikipedia.org/wiki/Jeffreys_prior] for the Poisson
model:

\[p(\lambda) \propto 1/\sqrt{\lambda}\]

This calculation is done symbolically and therefore represents an
important advantage of using the SymPy module within bayesloop.
This behavior can be turned off using the keyword argument
determineJeffreysPrior, in case one wants to use a flat parameter
prior instead or in the case that the automatic determination of the
prior takes too long:

M = bl.om.SymPy(poisson, 'lambda', bl.oint(0, 6, 1000), determineJeffreysPrior=False)

Alternatively, you can of course provide a custom prior via the keyword
argument prior. This will switch off the automatic determination of
the Jeffreys prior as well:

M = bl.om.SymPy(poisson, 'lambda', bl.oint(0, 6, 1000), prior=lambda x: 1/x)

See also this tutorial for further
information on prior distributions. Having defined the observation
model, it can be used for any type of study introduced above. Here, we
reproduce the result of the regime-switching
example we
discussed before. We find that the parameter distributions as well as
the model evidence is identical - as expected:

In [2]:

%matplotlib inline
import matplotlib.pyplot as plt # plotting
import seaborn as sns # nicer plots
sns.set_style('whitegrid') # plot styling

S = bl.Study()
S.loadExampleData()

T = bl.tm.RegimeSwitch('log10pMin', -7)

S.set(L, T)
S.fit()

plt.figure(figsize=(8, 4))
plt.bar(S.rawTimestamps, S.rawData, align='center', facecolor='r', alpha=.5)
S.plot('lambda')
plt.xlim([1851, 1962])
plt.xlabel('year');

+ Created new study.
+ Successfully imported example data.
+ Observation model: poisson. Parameter(s): ('lambda',)
+ Transition model: Regime-switching model. Hyper-Parameter(s): ['log10pMin']
+ Started new fit:
 + Formatted data.
 + Set prior (function): <lambda>. Values have been re-normalized.

 + Finished forward pass.
 + Log10-evidence: -80.63781

 + Finished backward pass.
 + Computed mean parameter values.

[image: ../_images/tutorials_customobservationmodels_3_5.png]

Finally, it is important to note that the SymPy module can also be
used to create random variables for which some parameters have
user-defined fixed values. The following example creates a normally
distributed random variable with a fixed mean value \(\mu = 4\),
leaving only the standard deviation as a free parameter of the resulting
observation model (which is assigned the parameter interval]0, 3[):

mu = 4
std = Symbol('stdev', positive=True)

normal = sympy.stats.Normal('normal', mu, std)
L = bl.om.SymPy(normal, 'stdev', bl.oint(0, 3, 1000))

Scipy.stats probability distributions

We continue by describing the use of probability distributions of the
scipy.stats module. Before we show some usage examples, it is
important to note here that scipy.stats does not use the canonical
parameter names for probability distributions. Instead, all continuous
distributions have two parameters denoted loc (for shifting the
distribution) and scale (for scaling the distribution). Discrete
distributions only support loc. While some distributions may have
additional parameters, loc and scale often take the role of
known parameters, like mean and standard deviation in case of the
normal distribution. In scipy.stats, you do not have to set loc
or scale, as they have default values loc=0 and scale=1. In
bayesloop, however, you will have to provide values for these
parameters, if you want either of them to be fixed and not treated as a
variable.

As a first example, we re-define the observation model of the coal
mining study S defined above, but this time use the scipy.stats
version of the Poisson distribution. First, we check the parameter
names:

In [3]:

import scipy.stats

scipy.stats.poisson.shapes

Out[3]:

'mu'

In scipy.stats, the rate of events in one time interval of the
Poisson distribution is called mu. Additionally, as a discrete
distribution, stats.poisson has an additional parameter loc
(which is not shown by .shapes attribute!). As we do not want to
shift the distribution, we have to set this parameter to zero in
bayesloop by passing a dictionary for fixed parameters when
initializing the class instance. As for the SymPy model, we have to pass
the names and values of all free parameters of the model (here only
mu):

In [4]:

L = bl.om.SciPy(scipy.stats.poisson, 'mu', bl.oint(0, 6, 1000), fixedParameters={'loc': 0})
S.set(L)
S.fit()

plt.figure(figsize=(8, 4))
plt.bar(S.rawTimestamps, S.rawData, align='center', facecolor='r', alpha=.5)
S.plot('mu')
plt.xlim([1851, 1962])
plt.xlabel('year');

+ Observation model: poisson. Parameter(s): ('mu',)
+ Started new fit:
 + Formatted data.
 + Set uniform prior with parameter boundaries.

 + Finished forward pass.
 + Log10-evidence: -80.49098

 + Finished backward pass.
 + Computed mean parameter values.

[image: ../_images/tutorials_customobservationmodels_7_5.png]

Comparing this result with the regime-switching
example, we
find that the model evidence value obtained using the scipy.stats
implementation of the Poisson distribution is different from the value
obtained using the built-in implementation or the sympy.stats
version. The deviation is explained by a different prior distribution
for the parameter \(\lambda\). While both the built-in version and
the sympy.stats version use the Jeffreys
prior [https://en.wikipedia.org/wiki/Jeffreys_prior] of the Poisson
model, the scipy.stats implementation uses a flat prior instead.
Since the scipy.stats module does not provide symbolic
representations of probability distributions, bayesloop cannot
determine the correct Jeffreys prior in this case. Custom priors are
still possible, using the keyword argument prior.

NumPy likelihood functions

In some cases, the data at hand cannot be described by a common
statistical distribution contained in either scipy.stats or
sympy.stats. In the following example, we assume normally
distributed data points with known standard deviation \(\sigma\),
but unknown mean \(\mu\). Additionally, we suspect that the data
points may be serially correlated and that the correlation coefficient
\(\rho\) possibly changes over time. For this multivariate problem
with the known standard deviation as “extra” data points, we need more
flexibility than either the SymPy or the SciPy class of
bayesloop can offer. Instead, we may define the likelihood function
of the observation model directly, with the help of
NumPy [http://www.numpy.org/] functions.

First, we simulate \(1000\) random variates with \(\mu=3\),
\(\sigma=1\), and a linearly varying correlation coefficient
\(\rho\):

In [5]:

n = 1000

parameters
mean = 3
sigma = 1
rho = np.concatenate([np.linspace(-0.5, 0.9, 500), np.linspace(0.9, -0.5, 499)])

covariance matrix
cov = np.diag(np.ones(n)*sigma**2.) + np.diag(np.ones(n-1)*rho*sigma**2., 1) + np.diag(np.ones(n-1)*rho*sigma**2., -1)

random variates
np.random.seed(123456)
obs_data = np.random.multivariate_normal([mean]*n, cov)

plt.figure(figsize=(8, 4))
plt.plot(obs_data, c='r', alpha=0.7, lw=2)
plt.xlim([0, 1000])
plt.xlabel('time')
plt.ylabel('data');

C:\Anaconda3\lib\site-packages\ipykernel_launcher.py:13: RuntimeWarning: covariance is not positive-semidefinite.
 del sys.path[0]

[image: ../_images/tutorials_customobservationmodels_9_1.png]

Before we create an observation model to be used by bayesloop, we
define a pure Python function that takes a segment of data as the first
argument, and NumPy arrays with parameter grids as further arguments.
Here, one data segment includes two subsequent data points x1 and
x2, and their known standard deviations s1 and s2. The
likelihood function we evaluate states the probability of observing the
current data point x2, given the previous data point x1, the
known standard deviations s2, s1 and the parameters \(\mu\)
and \(\rho\):

\[P(x_2~|~x_1, s_2, s_1, \mu, \rho) = \frac{P(x_2, x_1~|~s_2, s_1, \mu, \rho)}{P(x_1~|~s_1, \mu)}~,\]

where \(P(x_2, x_1~|~s_2, s_1, \mu, \rho)\) denotes the bivariate
normal
distribution [http://mathworld.wolfram.com/BivariateNormalDistribution.html],
and \(P(x_1~|~s_1, \mu)\) is the marginal, univariate normal
distribution of \(x_1\). The resulting distribution is expressed as
a Python function below. Note that all mathematical functions use NumPy
functions, as the function needs to work with arrays as input arguments
for the parameters:

In [6]:

def likelihood(data, mu, rho):
 x2, x1, s2, s1 = data

 exponent = -(((x1-mu)*rho/s1)**2. - (2*rho*(x1-mu)*(x2-mu))/(s1*s2) + ((x2-mu)/s2)**2.) / (2*(1-rho**2.))
 norm = np.sqrt(2*np.pi)*s2*np.sqrt(1-rho**2.)

 like = np.exp(exponent)/norm
 return like

As bayesloop still needs to know about the parameter boundaries and
discrete values of the parameters \(\mu\) and \(\rho\), we need
to create an observation model from the custom likelihood function
defined above. This can be done with the NumPy class:

In [7]:

L = bl.om.NumPy(likelihood, 'mu', bl.cint(0, 6, 100), 'rho', bl.oint(-1, 1, 100))

Before we can load the data into a Study instance, we have to format
data segments in the order defined by the likelihood function:

[[x1, x0, s1, s0],
 [x2, x1, s2, s1],
 [x3, x2, s3, s2],
 ...]

Note that in this case, the standard deviation \(\sigma = 1\) for
all time steps.

In [8]:

data_segments = input_data = np.array([obs_data[1:], obs_data[:-1], [sigma]*(n-1), [sigma]*(n-1)]).T

Finally, we create a new Study instance, load the formatted data,
set the custom observation model, set a suitable transition model, and
fit the model parameters:

In [9]:

S = bl.Study()
S.loadData(data_segments)
S.set(L)

T = bl.tm.GaussianRandomWalk('d_rho', 0.03, target='rho')
S.set(T)

S.fit()

+ Created new study.
+ Successfully imported array.
+ Observation model: likelihood. Parameter(s): ('mu', 'rho')
+ Transition model: Gaussian random walk. Hyper-Parameter(s): ['d_rho']
+ Started new fit:
 + Formatted data.
 + Set uniform prior with parameter boundaries.

 + Finished forward pass.
 + Log10-evidence: -605.35934

 + Finished backward pass.
 + Computed mean parameter values.

Plotting the true values of \(\rho\) used in the simulation of the
data together with the inferred distribution (and posterior mean values)
below, we see that the custom model accurately infers the time-varying
serial correlation in the data.

In [10]:

plt.figure(figsize=(8, 4))
S.plot('rho', label='mean inferred')
plt.plot(rho, c='r', alpha=0.7, lw=2, label='true')
plt.legend()
plt.ylim([-.6, 1]);

[image: ../_images/tutorials_customobservationmodels_19_0.png]

Finally, we note that the NumPy observation model allows to access
multiple data points at once, as we can pass arbitrary data segments to
it (in the example above, each data segment contained the current and
the previous data point). This also means that there is no check against
looking at the data points twice, and the user has to make sure that the
likelihood function at time \(t\) always states the probability of
only the current data point:

\[P(\text{data}_{t}~|~\{\text{data}_{t'}\}_{t'<t}, \text{parameters})\]

If the left side of this conditional probability contains data points
from more than one time step, the algorithm will look at each data point
more than once, and this generally results in an underestimation of the
uncertainty teid to the model parameters!

Probability parser

bayesloop as a probabilistic programming framework is focused on
two-level hierarchical models for time series analysis, and is therefore
not as flexible as other frameworks.
PyMC3 [https://github.com/pymc-devs/pymc3], for example, allows the
user to create hierarchical models of any structure and to apply
arbitrary arithmetic operations on the random variables contained in the
model. While bayesloop allows the user to build custom low-level
(observation) models and choose from a variety of high-level
(transition) models, one has no direct influence on the choice of
parameters. In other words, the Gaussian observation model includes
the parameters mean and standard deviation, but there is no direct
way of evaluating the variance or the ratio of mean and standard
deviation instead. In many applications, however, these combinations or
transformed variables are the key to informed desicions! In finance, for
example, the performance of a financial asset is often evaluated by its
Sharpe ratio [https://en.wikipedia.org/wiki/Sharpe_ratio] \(S\):

\[S = \frac{\mu - \mu_0}{\sigma} ~,\]

where \(\mu\) is the expected return of the financial asset,
\(\mu_0\) is the risk-free return, and \(\sigma\) is the
volatility. Assuming Gaussian returns, we can obtain time-varying
estimates of \(\mu\) and \(\sigma\) with a simple Gaussian
observation model with bayesloop, while \(\mu_0\) is just a
series of given numbers we may obtain from the central bank.

This tutorial shows how to evaluate arithmetic combinations of inferred
parameter distributions after the model has been fitted, using the
eval method of the Study class and the Parser class. With
these tools, we compute the probability that the time-varying Sharpe
ratio of a simulated series of returns is greater than one (a common
threshold for investing in financial assets).

First, we simulate a fictious series of price fluctuations. Here we
assume gradual changes in the expected return, the risk-free return and
the volatility. Based on the expected return and the volatility, we
sample the observed price fluctuations based on a Gaussian distribution:

In [1]:

%matplotlib inline
import matplotlib.pyplot as plt # plotting
import seaborn as sns # nicer plots
sns.set_style('whitegrid') # plot styling
sns.set_color_codes()

import bayesloop as bl
import numpy as np

mu_sim = np.concatenate([np.linspace(-0.1, 0.3, 250), np.linspace(0.3, 0.1, 250)])
sigma_sim = np.linspace(0.05, 0.2, 500)
mu0 = np.linspace(0.02, 0.01, 500)
sharpe_sim = (mu_sim-mu0)/sigma_sim

np.random.seed(123456)
data = mu_sim + sigma_sim*np.random.randn(500)

plt.figure(figsize=(10, 11))
plt.subplot2grid((7, 1), (0, 0))
plt.plot(mu_sim, c='b', lw=3, label='Expected return $\mathregular{\mu}$')
plt.xticks([100, 200, 300, 400], ['', '', '', ''])
plt.xlim([0, 500])
plt.legend(loc='upper left')

plt.subplot2grid((7, 1), (1, 0))
plt.plot(mu0, c='g', lw=3, label='Risk-free return $\mathregular{\mu_0}$')
plt.xticks([100, 200, 300, 400], ['', '', '', ''])
plt.xlim([0, 500])
plt.legend(loc='upper right')

plt.subplot2grid((7, 1), (2, 0))
plt.plot(sigma_sim, c='r', lw=3, label='Volatility $\mathregular{\sigma}$')
plt.xticks([100, 200, 300, 400], ['', '', '', ''])
plt.xlim([0, 500])
plt.legend(loc='upper left')

plt.subplot2grid((7, 1), (3, 0), rowspan=2)
plt.plot(sharpe_sim, lw=4, c='orange', label='Sharpe ratio S')
plt.xticks([100, 200, 300, 400], ['', '', '', ''])
plt.axhline(y=1, c='0.2', ls='dashed', lw=1, label='Investment threshold (S=1)')
plt.xlim([0, 500])
plt.legend(loc='lower right')

plt.subplot2grid((7, 1), (5, 0), rowspan=2)
plt.plot(data, c='0.2', lw=1.5, label='Simulated price fluctuations')
plt.xlim([0, 500])
plt.ylim([-0.65, 0.65])
plt.legend(loc='lower left')
plt.xlabel('Time [arbitrary units]');

[image: ../_images/tutorials_probabilityparser_1_0.png]

To infer the time-varying expected return \(\mu\) and volatility
\(\sigma\) from the simulated price fluctuations, we assume a
Gaussian observation model. The two parameters of this observation
model are themselves subject to a GaussianRandomWalk, the transition
model of the study. For simplicity, we set fixed magnitudes for the
parameter fluctuations (sigma_mu, sigma_stdev):

In [2]:

S = bl.Study()
S.load(data)

L = bl.om.Gaussian('mu', bl.cint(-0.5, 0.5, 100), 'sigma', bl.oint(0, 0.5, 100))
T = bl.tm.CombinedTransitionModel(
 bl.tm.GaussianRandomWalk('sigma_mu', 0.01, target='mu'),
 bl.tm.GaussianRandomWalk('sigma_stdev', 0.005, target='sigma')
)

S.set(L, T)
S.fit()

+ Created new study.
+ Successfully imported array.
+ Observation model: Gaussian observations. Parameter(s): ['mu', 'sigma']
+ Transition model: Combined transition model. Hyper-Parameter(s): ['sigma_mu', 'sigma_stdev']
+ Started new fit:
 + Formatted data.
 + Set prior (function): jeffreys. Values have been re-normalized.

 + Finished forward pass.
 + Log10-evidence: 130.79643

 + Finished backward pass.
 + Computed mean parameter values.

Plotting the inferred expected return and volatility against the true
underlying values used in the simulation, we find that the time-varying
parameter model we defined above nicely captures the variations in the
performance of the fictious financial asset:

In [3]:

plt.figure(figsize=(10, 3))
plt.subplot2grid((1, 2), (0, 0))
S.plot('mu', color='b', label='inferred expected return')
plt.plot(mu_sim, lw=1.5, c='red', ls='dashed', alpha=0.5, label='true expected return')
plt.ylim([-0.2, 0.5])
plt.legend(loc='lower right')

plt.subplot2grid((1, 2), (0, 1))
S.plot('sigma', color='r', label='inferred volatility')
plt.plot(sigma_sim, lw=1.5, c='blue', ls='dashed', alpha=0.5, label='true volatility')
plt.ylim([0, 0.3])
plt.legend(loc='upper left');

[image: ../_images/tutorials_probabilityparser_5_0.png]

Based on these inferred parameter distributions, we can now evaluate
probabilities in the form of inequalities using the eval function of
the Study class. For example, we can evaluate the probability of a
positive expected return at time step 50:

In [4]:

S.eval('mu > 0.', t=50);

P(mu > 0.) = 0.2486016146556542

By default, eval prints out the resulting probability. This behavior
can be controlled with the keyword-argument silent. eval further
returns the value, for further processing:

In [5]:

p = S.eval('mu > 0.', t=50, silent=True)
print(p)

0.248601614656

The keyword-argument t is not the only way to define the time step
at which to evaluate the probability value. One can also use the @
operator. In this example, we ask for the probability of a volatility
value smaller than 0.2 at t=400:

In [6]:

S.eval('sigma@400 < 0.2');

P(sigma@400 < 0.2) = 0.934624296075193

The evaluation of probability values is not restricted to a single time
step, one may also be interested whether the expected return at
t=100 is greater than at t=400. Note that bayesloop does not
infer the joint parameter distribution of all time steps, but the
conditional joint parameter distributions for each time step
iteratively. This means that correlations between the parameter at
different time steps are ignored by the eval method. Further note
that comparing parameters at different time steps may result in a fairly
long computation time and a lot of RAM usage, as bayesloop has to
take into account all possible combinations of parameter values.

In [7]:

S.eval('mu@100 > mu@400');

P(mu@100 > mu@400) = 0.0007986199467668083

The eval method further computes arithmetic combinations of
different parameters. In our example, bayesloop computes the joint
parameter distribution of mu and sigma for each time step. When
we ask for the probability that the ratio of mu and sigma is
greater than one, eval computes the ratio of the parameters from
their joint distribution:

In [8]:

S.eval('mu/sigma > 1', t=100);

P(mu/sigma > 1) = 0.12878704018028345

The parameter ratio above does not yet resemble the Sharpe ratio
\(S\), as the risk-free return is not inserted yet. The eval
method does not only support the parsing of parameter names, but also
the parsing of plain numbers. Below, we first check the risk-free return
at t=100, and then insert this number into the query of the eval
method. We discover that at t=100, the probability that the Sharpe
ratio \(S\) exceeds the value of one is only about 2.3%:

In [9]:

mu0[100]

Out[9]:

0.017995991983967938

In [10]:

S.eval('(mu - 0.018)/sigma > 1', t=100);

P((mu - 0.018)/sigma > 1) = 0.023246959985844733

Of course, we can also insert the risk-free return value directly, via
string manipulation:

In [11]:

S.eval('(mu - ' + str(mu0[100]) + ')/sigma > 1', t=100);

P((mu - 0.017995991984)/sigma > 1) = 0.023246959985844733

The eval method contains a bit of computational overhead, as it has
to pre-process all parameter values before every single query. As we
want to compute \(p(S > 1)\) for all 500 time steps, we are better
off by using a Parser instance. The Parser is initialized only
once, and then queried repeatedly without computational overhead. Below
we show one example with a single query to the Parser instance, and
subsequently repeat the query for all time steps:

In [12]:

P = bl.Parser(S)
P('(mu - ' + str(mu0[100]) + ')/sigma > 1', t=100);

P((mu - 0.017995991984)/sigma > 1) = 0.023246959985844733

In [13]:

p_invest = []

for t in range(500):
 p_invest.append(P('(mu - ' + str(mu0[t]) + ')/sigma > 1', t=t, silent=True))

Finally, we may plot the probability that our probabilistic,
time-varying Sharpe ratio \(S\) is greater than one for each time
step, together with the underlying true values of \(S\) in the
simulation. We find that \(p(S > 1)\) attains a value of
\(\approx 0.5\) at the times when \(S=1\) in the simulation, and
increases further as \(S > 1\). Consequently, we find that
\(p(S > 1) < 0.5\) for \(S < 1\) in the simulation. This example
thereby illustrates how the combination of inferred time-varying
parameters can help to create robust indicators for desicion making in
the presence of uncertainty.

In [14]:

plt.figure(figsize=(10, 6))

plt.subplot2grid((2, 1), (0, 0))
plt.plot(sharpe_sim, lw=4, c='orange', label='Sharpe ratio S')
plt.xticks([100, 200, 300, 400], ['', '', '', ''])
plt.axhline(y=1, c='0.2', ls='dashed', lw=1, label='Investment threshold (S=1)')
plt.xlim([0, 500])
plt.legend(loc='lower right')

plt.subplot2grid((2, 1), (1, 0))
plt.plot(p_invest, c='0.3', lw=2)
plt.fill_between(range(500), p_invest, 0, color='k', alpha=0.2)
plt.xlim([0, 500])
plt.ylim([-0.05, 1.05])
plt.xlabel('Time')
plt.ylabel('p(S > 1)');

[image: ../_images/tutorials_probabilityparser_25_0.png]

So far, we have parsed either parameter names or plain numbers in the
queries to the eval method or the Parser instance. In many
applications, however, one also needs to compute the sqrt, or the
cos of a parameter. bayesloop’s probability parser therefore
allows to parse any function contained in the numpy module. Note,
however, that only functions which preserve the shape of an input array
will return valid results (e.g. using sum will not work).

In [15]:

P('sin(mu) + cos(sigma) > 1', t=50);

P(sin(mu) + cos(sigma) > 1) = 0.2479001934193268

On a final note, the Parser class also handles (hyper-)parameters of
different study instances. For example, one could imagine to run one
study S1 (which may be a Study, HyperStudy,
ChangepointStudy or an OnlineStudy) to analyze price
fluctuations of a financial asset, and another study S2 to analyze
the frequency of market-related Twitter messages. After fitting data
points, one can initialize a Parser instance that takes into account
both studies:

P = bl.Parser(S1, S2)

Note that the two studies S1 and S2 must not contain duplicate
(hyper-)parameter names! This allows to create performance indicators
that take into account different kinds of information (e.g. pricing data
and social media activity).

Multiprocessing

Conducting extensive data studies based on the HyperStudy or
ChangepointStudy classes may involve several 10.000 or 100.000
individual fits (see e.g.
here).
Since these individual fits with different hyper-parameter values are
independent of each other, the computational workload may be distributed
among the individual cores of a multi-core processor. To keep things
simple, bayesloop uses object
serialization [https://docs.python.org/2/library/pickle.html] to
create duplicates of the current HyperStudy or ChangepointStudy
instance and distributes them across the predefined number of cores. In
general, this procedure may be handled by the built-in Python module
multiprocessing [https://docs.python.org/2/library/multiprocessing.html].
However, multiprocessing relies on the built-in module
pickle [https://docs.python.org/2/library/pickle.html] for object
serialization, which fails to serialize the classes defined in
bayesloop. We therefore use a different version of the
multiprocessing module that is part of the
pathos [https://github.com/uqfoundation/pathos] module.

The latest version of pathos can be installed directly via
pip [https://pypi.python.org/pypi/pip], but requires
git [https://de.wikipedia.org/wiki/Git]:

pip install git+https://github.com/uqfoundation/pathos

Note: Windows users need to install a C compiler before installing
pathos. One possible solution for 64-bit systems is to install
Microsoft Visual C++ 2008 SP1 Redistributable Package
(x64) [http://www.microsoft.com/en-us/download/confirmation.aspx?id=2092]
and Microsoft Visual C++ Compiler for Python
2.7 [http://www.microsoft.com/en-us/download/details.aspx?id=44266].

Once installed correctly, the number of cores to use in a hyper-study or
change-point study can be specified by using the keyword argument
nJobs within the fit method. Example:

S.fit(silent=True, nJobs=4)

Examples

	Anomalous diffusion
	Diffusion gradient
	Trajectory simulation

	Modeling

	Analysis

	Regime-switch diffusion process
	Trajectory simulation

	Modeling

	Analysis

	Model selection

	Stock market fluctuations
	Persistent random walk model

	Online study

	Volatility spikes

	Islands of stability

	Automatic tuning

	Real-time model selection

Anomalous diffusion

Diffusion processes are mostly used to describe the random motion of
particles in fluids, but also apply to biological systems, like animals
that search for food or cancer cells migrating through tissue. In an
experimental setup, we may simply track the random motions of a
particle/animal/cell over time and thereby use it as a probe to measure
the diffusion coefficient of the fluid/habitat/tissue. However, by
averaging over all measured movements, one may loose important
information, as the diffusion coefficient may change over time or
depending on the current position of the probe. Changes in the diffusion
coefficient may be externally triggered, e.g. by a change in temperature
for diffusing particles or a change in terrain within the foraging
habitat of an animal. Furthermore, changes in diffusivity may be
internally triggered, e.g. by the cell cycle of an invading cancer cell.
Here, we present two examples of anomalous diffusion, one with a
gradually changing diffusivity, and one with discrete regions of varying
diffusivity.

Diffusion gradient

Suppose we have a diffusion gradient, for example due to a temperature
gradient across our sample, and we want to determine the diffusion
coefficient for different positions along the axis of the gradient. To
infer the spatially changing diffusion coefficient, we assume that the
amplitude of the random walk of our particle changes gradually over
time, as the particle moves through regions of varying diffusivity.

For this example, we assume a positive, constant diffusion gradient,
resulting a linear increase of the diffusion coefficient \(D\):

In [1]:

%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

D = np.linspace(0.0, 15., 500)
x = np.arange(500)

plt.figure(figsize=(8,2))
plt.fill_between(x, D, 0)
plt.xlabel('x position [a.u.]')
plt.ylabel('D [a.u.]');

[image: ../_images/examples_anomalousdiffusion_1_0.png]

Trajectory simulation

For this example, we simply simulate a random walk of a particle
assuming a Gaussian random walk with the standard deviation equal to the
diffusion coefficient at the current position:

In [2]:

np.random.seed(12337) # reproducable results
trajectory = [[150., 150.]] # starting point

for t in range(750):
 try:
 dc = D[int(trajectory[-1][0])] # look up diffusion coefficient
 except:
 if int(trajectory[-1][0]) >= 500:
 dc = 15. # constant diffusion coefficient on the far right
 else:
 dc = 0. # constant diffusion coefficient on the far left
 trajectory.append([p + np.random.normal(0, dc) for p in trajectory[-1]])

trajectory = np.array(trajectory)

If we plot this simulated trajectory, we see how the distance between
two subsequent positions of the particle is significantly smaller on the
left as compared to the right of our diffusion gradient (visible as gray
shading):

In [3]:

plt.figure(figsize=(8, 10))

D_img = np.array([list(D)]*len(D))[:, :250]
plt.imshow(D_img, cmap='Greys', alpha=0.9, zorder=0, interpolation='nearest')

plt.scatter(*trajectory.T, lw=0.2, c='b', alpha=0.7, zorder=2, s=50)
plt.plot(*trajectory.T, lw=1.5, c='k', zorder=1)
plt.xlim([0, 250])
plt.ylim([80, 250])
plt.xlabel('x position [a.u.]')
plt.ylabel('y position [a.u.]');

[image: ../_images/examples_anomalousdiffusion_5_0.png]

Modeling

To model this example of anomalous diffusion, we first generate a
low-level model - a simple Gaussian random walk - using SymPy random
variables. Here, we simply assume that the velocity components of our
particle are normally distributed, with zero mean. As we further assume
that the diffusion coefficient changes gradually across our sample, our
particle should also gradually change its diffusivity as it moves across
the sample. We therefore also use a Gaussian random walk as the
high-level model. As we do not know the amplitude of the change of
diffusivity, we choose a HyperStudy as it enables the inference of
this hyper-parameter.

In [4]:

import bayesloop as bl
import sympy.stats
from sympy import Symbol

S = bl.HyperStudy()

load data
velocity = trajectory[1:] - trajectory[:-1] # compute velocity vectors from positions
S.load(velocity)

create low-level model
std = Symbol('D', positive=True)
normal = sympy.stats.Normal('normal', 0, std)

we assume the diffusivity to lie within the interval]0, 15[
within this interval, we create 5000 equally spaced parameter values
L = bl.om.SymPy(normal, 'D', bl.oint(0, 15, 5000))

create high-level model
we assume a Gaussian random walk of the parameter 'D' with a
standard deviation within the interval [0, 0.3] (20 equally
spaced hyper-parameter values)
T = bl.tm.GaussianRandomWalk('sigma', bl.cint(0, 0.3, 20), target='D')

S.set(L, T)
S.fit()

+ Created new study.
 --> Hyper-study
+ Successfully imported array.
 + Trying to determine Jeffreys prior. This might take a moment...
 + Successfully determined Jeffreys prior: sqrt(2)/D. Will use corresponding lambda function.
+ Observation model: normal. Parameter(s): ('D',)
+ Transition model: Gaussian random walk. Hyper-Parameter(s): ['sigma']
+ Set hyper-prior(s): ['uniform']
+ Started new fit.
 + 20 analyses to run.

Widget Javascript not detected. It may not be installed or enabled properly.

C:\Anaconda3\lib\site-packages\scipy\ndimage\filters.py:139: RuntimeWarning: divide by zero encountered in double_scalars
 p = numpy.polynomial.Polynomial([0, 0, -0.5 / (sigma * sigma)])
C:\Anaconda3\lib\site-packages\numpy\polynomial\polynomial.py:780: RuntimeWarning: invalid value encountered in multiply
 c0 = c[-i] + c0*x

 ! WARNING: Forward pass distribution contains only zeros, check parameter boundaries!
 Stopping inference process. Setting model evidence to zero.

 + Computed average posterior sequence
 + Computed hyper-parameter distribution
 + Log10-evidence of average model: -1583.15297
 + Computed local evidence of average model
 + Computed mean parameter values.
+ Finished fit.

Analysis

After fitting is done, we may evaluate how the diffusion coefficient of
our particle changed over time by plotting the mean values of the
posterior distributions (black line) together with the posterior
distributions of the amplitude of the particle motions (blue shading):

In [5]:

plt.figure(figsize=(8,2))
S.plot('D')
plt.xlim([0, 750])
plt.ylim([0, 8]);

[image: ../_images/examples_anomalousdiffusion_9_0.png]

As we can see, the diffusion coefficient changes quite irregularly over
time, but this irregularity is just the result of the irregular path of
our particle across the sample. However, this plots confirms that the
chosen parameter boundaries of \(\sigma \in [0, 20]\) suffice. We
may re-plot the particle path from above, but this time color-code the
particle positions with the corresponding inferred diffusivity values:

In [6]:

D_mean = S.getParameterMeanValues('D') # extract posterior mean values of first (and only) parameter

prepare color coding
m = plt.cm.ScalarMappable(cmap='RdYlBu')
m.set_array(D_mean)
m.autoscale()

plt.figure(figsize=(8, 10))
plt.imshow(D_img, cmap='Greys', alpha=0.9, zorder=0, interpolation='nearest')
plt.scatter(*trajectory[1:].T, lw=0.2, c=[m.to_rgba(x) for x in D_mean], alpha=0.9, zorder=2, s=50)
plt.plot(*trajectory[1:].T, lw=1.5, c='k', zorder=1)
plt.xlim([0, 250])
plt.ylim([80, 250])
plt.xlabel('x position [a.u.]')
plt.ylabel('y position [a.u.]');

[image: ../_images/examples_anomalousdiffusion_11_0.png]

Finally, we can directly compare the inferred mean values to the true
values of the diffusion coefficient used in the simulation:

In [7]:

D = np.linspace(0.0, 15., 500)
x = np.arange(500)

plt.figure(figsize=(8,2))
plt.fill_between(x, D, 0)
plt.scatter(trajectory[1:, 0], D_mean, c='r', alpha=0.6)

plt.xlim([0, 250])
plt.ylim([0, 8])
plt.xlabel('x position [a.u.]')
plt.ylabel('D [a.u.]');

[image: ../_images/examples_anomalousdiffusion_13_0.png]

To assess our choice for the hyper-parameter boundaries, we may further
plot the inferred distribution of the magnitude of parameter changes
between time steps. In this case, the distribution falls off to
(approximately) zero on both sides, therefore the boundaries suffice.

In [8]:

plt.figure(figsize=(8,3))
S.plot('sigma', alpha=0.7, facecolor='g')
plt.xlim([0, 0.3]);

[image: ../_images/examples_anomalousdiffusion_15_0.png]

Regime-switch diffusion process

While the first example investigated gradual variations, we now turn to
abrupt jumps in diffusivity, as they may occur for proteins diffusing on
a cell membrane. The binding and unbinding of the protein to other
constituents of the membrane may inhibit or favor diffusion. In a very
simplistic attempt to model this complex process, we assume only two
different regimes of diffusivity, and arrange them spatially like a
chessboard pattern. On the dark patches, the diffusivity reaches three
times the value as on the light patches:

In [9]:

import matplotlib.patches as mpatches

helper function for chessboard pattern
def check_region(x, y):
 if (int(x) % 2 == 0 and int(y) % 2 == 0) or (int(x) % 2 == 1 and int(y) % 2 == 1):
 return True
 else:
 return False

create chessboard pattern
n = 5
D_img = np.array([0, 1]*int(np.ceil(0.5*(n**2))))[:-1].reshape([n, n])

plot chessboard pattern
plt.figure(figsize=(8,8))
plt.imshow(D_img, cmap='Greys', alpha=0.5, extent=[0, n, 0, n], zorder=0, interpolation='nearest')
plt.grid(b=False, which='major')
plt.xlabel('x position [a.u.]')
plt.ylabel('y position [a.u.]')

legend
white_patch = mpatches.Patch(color='white', label='D = 0.03 a.u.')
gray_patch = mpatches.Patch(color='0.5', label='D = 0.09 a.u.')
legend = plt.legend(handles=[white_patch, gray_patch],
 bbox_to_anchor=(0., 1.02, 1., .102),
 loc=3,
 borderaxespad=0.,
 frameon = 1)
frame = legend.get_frame()
frame.set_facecolor('0.85')

[image: ../_images/examples_anomalousdiffusion_17_0.png]

Trajectory simulation

Again, we simulate a random walk of a particle assuming a Gaussian
random walk with the standard deviation equal to the diffusion
coefficient at the current position:

In [10]:

np.random.seed(1274)

D1 = 0.03
D2 = 0.09

trajectory = [[2.5, 2.5]]

for t in range(2000):
 dc = D1 if check_region(*trajectory[-1]) else D2
 trajectory.append([x + np.random.normal(0, dc) for x in trajectory[-1]])

trajectory = np.array(trajectory)

plotting
plt.figure(figsize=(8,8))
plt.imshow(D_img, cmap='Greys', alpha=0.5, extent=[0, n, 0, n], zorder=0, interpolation='nearest')
plt.grid(b=False, which='major')
plt.xlabel('x position [a.u.]')
plt.ylabel('y position [a.u.]')

plt.scatter(*trajectory.T, lw=0.2, c='b', alpha=0.7, zorder=2, s=50)
plt.plot(*trajectory.T, lw=1.5, c='k', zorder=1)

plt.xlim([1, 5])
plt.ylim([0, 4]);

[image: ../_images/examples_anomalousdiffusion_19_0.png]

Modeling

The low-level model stays the same as in the previous example, a
Gaussian random walk. As the parameter changes are not gradual in this
example, however, we assume a regime-switching process for the
high-level model. Here, we assign a small probability to all possible
parameter values in each time step to account for the rare, but possible
event of a abrupt parameter change. As we do not know this minimal
probability value a-priori, we again use a hyper-study to test different
values. Note that we may keep our study-instance defined as above and
just load new data, adjust the parameter boundaries and alter the
high-level model:

In [11]:

load new data
velocity = trajectory[1:] - trajectory[:-1]
S.load(velocity)

change parameter boudaries of low-level model
L = bl.om.SymPy(normal, 'D', bl.oint(0, 0.2, 2000))

create high-level model
T = bl.tm.RegimeSwitch('log10pMin', bl.cint(-10, 3, 20))

S.set(L, T)
S.fit()

+ Successfully imported array.
 + Trying to determine Jeffreys prior. This might take a moment...
 + Successfully determined Jeffreys prior: sqrt(2)/D. Will use corresponding lambda function.
+ Observation model: normal. Parameter(s): ('D',)
+ Transition model: Regime-switching model. Hyper-Parameter(s): ['log10pMin']
+ Set hyper-prior(s): ['uniform']
+ Started new fit.
 + 20 analyses to run.

Widget Javascript not detected. It may not be installed or enabled properly.

 + Computed average posterior sequence
 + Computed hyper-parameter distribution
 + Log10-evidence of average model: 3236.20040
 + Computed local evidence of average model
 + Computed mean parameter values.
+ Finished fit.

Analysis

After fitting is done, we may check whether we are indeed able to detect
the abrupt parameter changes over time:

In [12]:

plt.figure(figsize=(8,2))
S.plot('D')
plt.xlim([0, 2000])
plt.ylim([0, .2]);

[image: ../_images/examples_anomalousdiffusion_23_0.png]

The irregular spacing of the parameter jumps in time gets more regular
once the parameter evolution is plotted on the chessboard pattern:

In [13]:

D_mean = S.getParameterMeanValues('D')

prepare color coding
m = plt.cm.ScalarMappable(cmap='RdYlBu')
m.set_array([0.03, 0.09])
m.autoscale()

plotting
plt.figure(figsize=(8,8))
plt.imshow(D_img, cmap='Greys', alpha=0.5, extent=[0, n, 0, n], zorder=0, interpolation='nearest')
plt.grid(b=False, which='major')
plt.xlabel('x position [a.u.]')
plt.ylabel('y position [a.u.]')

plt.scatter(*trajectory[1:].T, lw=0.2, c=[m.to_rgba(x) for x in D_mean], alpha=0.9, zorder=2, s=50)
plt.plot(*trajectory[1:].T, lw=1.5, c='k', zorder=1)

cb = plt.colorbar(m, shrink=0.75)
cb.set_label('diffusivity [a.u.]')
cb.set_clim(0.03, 0.09)

plt.xlim([1, 5])
plt.ylim([0, 4]);

[image: ../_images/examples_anomalousdiffusion_25_0.png]

The figure above shows that we can nicely reconstruct the spatial
pattern in diffusivity for the region covered by the diffusing particle.
Finally, we may plot a histogram to confirm that the inferred values for
the diffusion coefficient (green histogram) align with the true values
used in the simulation (red lines):

In [14]:

plt.figure(figsize=(8,3))
plt.hist(D_mean, 20, alpha=0.7, facecolor='g', normed=True)
plt.axvline(0.03, 0, 1600, lw=1, c='r')
plt.axvline(0.09, 0, 1600, lw=1, c='r')
plt.xlabel('diffusivity [a.u.]')
plt.ylabel('probability density [a.u.]');

[image: ../_images/examples_anomalousdiffusion_27_0.png]

Model selection

In the example above, we a-priori assumed abrupt changes of the
diffusion coefficient, because we knew the parameter dynamics from the
simulation of our trajectory. In an experimental setup, however, one
hardly knows the exact nature of the parameter dynamics before-hand. The
big advantage of bayesloop is to compute the model evidence, i.e. the
probability (density) of observing the data given the model one assumes.
For a simple demonstration, we again choose the high-level model of the
first example and assume gradual parameter fluctuations (we only adjust
the scale for this example) and re-run the fit:

In [15]:

T = bl.tm.GaussianRandomWalk('sigma', bl.cint(0, 0.01, 20), target='D')
S.set(T)

S.fit()

+ Transition model: Gaussian random walk. Hyper-Parameter(s): ['sigma']
+ Set hyper-prior(s): ['uniform']
+ Started new fit.
 + 20 analyses to run.

Widget Javascript not detected. It may not be installed or enabled properly.

C:\Anaconda3\lib\site-packages\scipy\ndimage\filters.py:139: RuntimeWarning: divide by zero encountered in double_scalars
 p = numpy.polynomial.Polynomial([0, 0, -0.5 / (sigma * sigma)])
C:\Anaconda3\lib\site-packages\numpy\polynomial\polynomial.py:780: RuntimeWarning: invalid value encountered in multiply
 c0 = c[-i] + c0*x

 ! WARNING: Forward pass distribution contains only zeros, check parameter boundaries!
 Stopping inference process. Setting model evidence to zero.

 + Computed average posterior sequence
 + Computed hyper-parameter distribution
 + Log10-evidence of average model: 3206.17483
 + Computed local evidence of average model
 + Computed mean parameter values.
+ Finished fit.

Here, we obtain a model evidence value of 3206 on a
log\(_{10}\) scale (these probability density values can get
absurdly small or large if many data points are involved), compared to
3236 for the correct, regime-switching model. This means that it is
10\(^{\textbf{30}}\)-times more likely that the 2000
data points of our trajectory are created by a regime-switching process,
compared to gradual variations of the diffusion coefficient!

Stock market fluctuations

The fluctuations of stock prices represent an intriguing example of a
complex random walk. Stock prices are influenced by transactions that
are carried out over a broad range of time scales, from micro- to
milliseconds for high-frequency hedge funds over several hours or days
for day-traders to months or years for long-term investors. We therefore
expect that the statistical properties of stock price fluctuations, like
volatility and auto-correlation of returns, are not constant over time,
but show significant fluctuations of their own. Time-varying parameter
models can account for such changes in volatility and auto-correlation
and update their parameter estimates in real-time.

There are, however, certain events that render previously gathered
information about volatility or autocorrelation of returns completely
useless. News announcements that are unexpected at least to some extent,
for example, can induce increased trading activity, as market
participants update their orders according to their interpretation of
novel information. The resulting “non-scheduled” price corrections can
often not be adequately described by the current estimates of
volatility. Even a model that accounts for gradual variations in
volatility cannot reproduce these large price corrections. Instead, when
such an event happens, it becomes favorable to forget about previously
gathered parameter estimates and completely start over. In this example,
we use the bayesloop framework to specifically evaluate the
probability of previously acquired information becoming useless. We
interpret this probability value as a risk metric and evaluate it for
each minute of an individual trading day (Nov 28, 2016) for the
exchange-traded fund SPY [https://www.google.com/finance?q=SPY]. The
announcement of macroeconomic indicators on this day results in a
significant increase of our risk metric in intra-day trading.

DISCLAIMER: This website does not provide tax, legal or accounting
advice. This material has been prepared for informational purposes only,
and is not intended to provide, and should not be relied on for, tax,
legal or accounting advice. You should consult your own tax, legal and
accounting advisors before engaging in any transaction.

Note: The intraday pricing data used in this example is obtained via
Google Finance [https://www.google.com/finance]:

https://www.google.com/finance/getprices?q=SPY&i=60&p=1d&f=d,c

This request returns a list of minute close prices (and date/time
information; f=d,c) for SPY for the last trading period. The maximum
look-back period is 14 days (p=14d) for requests of minute-scale
data (i=60).

In [1]:

%matplotlib inline
import numpy as np
import bayesloop as bl
import sympy.stats as stats
from tqdm import tqdm_notebook
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_color_codes() # use seaborn colors

minute-scale pricing data
prices = np.array(
 [221.14 , 221.09 , 221.17 , 221.3 , 221.3 , 221.26 ,
 221.32 , 221.17 , 221.2 , 221.27 , 221.19 , 221.12 ,
 221.08 , 221.1 , 221.075, 221.03 , 221.04 , 221.03 ,
 221.11 , 221.14 , 221.135, 221.13 , 221.04 , 221.15 ,
 221.21 , 221.25 , 221.21 , 221.17 , 221.21 , 221.2 ,
 221.21 , 221.17 , 221.1 , 221.13 , 221.18 , 221.15 ,
 221.2 , 221.2 , 221.23 , 221.25 , 221.25 , 221.25 ,
 221.25 , 221.22 , 221.2 , 221.15 , 221.18 , 221.13 ,
 221.1 , 221.08 , 221.13 , 221.09 , 221.08 , 221.07 ,
 221.09 , 221.1 , 221.06 , 221.1 , 221.11 , 221.18 ,
 221.26 , 221.46 , 221.38 , 221.35 , 221.3 , 221.18 ,
 221.18 , 221.18 , 221.17 , 221.175, 221.13 , 221.03 ,
 220.99 , 220.97 , 220.9 , 220.885, 220.9 , 220.91 ,
 220.94 , 220.935, 220.84 , 220.86 , 220.89 , 220.91 ,
 220.89 , 220.84 , 220.83 , 220.74 , 220.755, 220.72 ,
 220.69 , 220.72 , 220.79 , 220.79 , 220.81 , 220.82 ,
 220.8 , 220.74 , 220.75 , 220.73 , 220.69 , 220.72 ,
 220.73 , 220.69 , 220.71 , 220.72 , 220.8 , 220.81 ,
 220.79 , 220.8 , 220.79 , 220.74 , 220.77 , 220.79 ,
 220.87 , 220.86 , 220.92 , 220.92 , 220.88 , 220.87 ,
 220.88 , 220.87 , 220.94 , 220.93 , 220.92 , 220.94 ,
 220.94 , 220.9 , 220.94 , 220.9 , 220.91 , 220.85 ,
 220.85 , 220.83 , 220.85 , 220.84 , 220.87 , 220.91 ,
 220.85 , 220.77 , 220.83 , 220.79 , 220.78 , 220.78 ,
 220.79 , 220.83 , 220.87 , 220.88 , 220.9 , 220.97 ,
 221.05 , 221.02 , 221.01 , 220.99 , 221.04 , 221.05 ,
 221.06 , 221.07 , 221.12 , 221.06 , 221.07 , 221.03 ,
 221.01 , 221.03 , 221.03 , 221.01 , 221.02 , 221.04 ,
 221.04 , 221.07 , 221.105, 221.1 , 221.09 , 221.08 ,
 221.07 , 221.08 , 221.03 , 221.06 , 221.1 , 221.11 ,
 221.11 , 221.18 , 221.2 , 221.34 , 221.29 , 221.235,
 221.22 , 221.2 , 221.21 , 221.22 , 221.19 , 221.17 ,
 221.19 , 221.13 , 221.13 , 221.12 , 221.14 , 221.11 ,
 221.165, 221.19 , 221.18 , 221.19 , 221.18 , 221.15 ,
 221.16 , 221.155, 221.185, 221.19 , 221.2 , 221.2 ,
 221.16 , 221.18 , 221.16 , 221.11 , 221.07 , 221.095,
 221.08 , 221.08 , 221.09 , 221.11 , 221.08 , 221.08 ,
 221.1 , 221.08 , 221.11 , 221.07 , 221.11 , 221.1 ,
 221.09 , 221.07 , 221.14 , 221.12 , 221.08 , 221.09 ,
 221.05 , 221.08 , 221.065, 221.05 , 221.06 , 221.085,
 221.095, 221.07 , 221.05 , 221.09 , 221.1 , 221.145,
 221.12 , 221.14 , 221.12 , 221.12 , 221.12 , 221.11 ,
 221.14 , 221.15 , 221.13 , 221.12 , 221.11 , 221.105,
 221.105, 221.13 , 221.14 , 221.1 , 221.105, 221.105,
 221.11 , 221.13 , 221.15 , 221.11 , 221.13 , 221.08 ,
 221.11 , 221.12 , 221.12 , 221.12 , 221.13 , 221.15 ,
 221.18 , 221.21 , 221.18 , 221.15 , 221.15 , 221.15 ,
 221.15 , 221.15 , 221.13 , 221.13 , 221.16 , 221.13 ,
 221.11 , 221.12 , 221.09 , 221.07 , 221.06 , 221.04 ,
 221.06 , 221.09 , 221.07 , 221.045, 221. , 220.99 ,
 220.985, 220.95 , 221. , 221.01 , 221.005, 220.99 ,
 221.03 , 221.055, 221.06 , 221.03 , 221.03 , 221.03 ,
 221. , 220.95 , 220.96 , 220.97 , 220.965, 220.97 ,
 220.94 , 220.93 , 220.9 , 220.9 , 220.9 , 220.91 ,
 220.94 , 220.92 , 220.94 , 220.91 , 220.92 , 220.935,
 220.875, 220.89 , 220.91 , 220.92 , 220.93 , 220.93 ,
 220.91 , 220.9 , 220.89 , 220.9 , 220.9 , 220.93 ,
 220.94 , 220.92 , 220.93 , 220.88 , 220.88 , 220.86 ,
 220.9 , 220.92 , 220.85 , 220.83 , 220.83 , 220.795,
 220.81 , 220.78 , 220.7 , 220.69 , 220.6 , 220.58 ,
 220.61 , 220.63 , 220.68 , 220.63 , 220.63 , 220.595,
 220.66 , 220.645, 220.64 , 220.6 , 220.579, 220.53 ,
 220.53 , 220.5 , 220.42 , 220.49 , 220.49 , 220.5 ,
 220.475, 220.405, 220.4 , 220.425, 220.385, 220.37 ,
 220.49 , 220.46 , 220.45 , 220.48 , 220.51 , 220.48]
)

plt.figure(figsize=(8,2))
plt.plot(prices)
plt.ylabel('price [USD]')
plt.xlabel('Nov 28, 2016')
plt.xticks([30, 90, 150, 210, 270, 330, 390],
 ['10am', '11am', '12pm', '1pm', '2pm', '3pm', '4pm'])
plt.xlim([0, 390]);

[image: ../_images/examples_stockmarketfluctuations_1_0.png]

Persistent random walk model

In this example, we choose to model the price evolution of SPY as a
simple, well-known random walk model: the auto-regressive process of
first order. We assume that subsequent log-return values \(r_t\) of
SPY obey the following recursive instruction:

\[r_t = \rho_t \cdot r_{t-1} + \sqrt{1-\rho^2} \cdot \sigma_t \cdot \epsilon_t\]

with the time-varying correlation coefficient \(\rho_t\) and the
time-varying volatility parameter \(\sigma_t\). Here,
\(\epsilon_t\) is drawn from a standard normal distribution and
represents the driving noise of the process and the scaling factor
\(\sqrt{1-\rho_t^2}\) makes sure that \(\sigma_t\) is the
standard deviation of the process. In bayesloop, we define this
observation model as follows:

bl.om.ScaledAR1('rho', bl.oint(-1, 1, 100), 'sigma', bl.oint(0, 0.006, 400))

This implementation of the correlated random walk model will be
discussed in detail in the next section.

Looking at the log-returns of our example, we find that the magnitude of
the fluctuations (i.e. the volatility) is higher after market open and
before market close. While these variations happen quite gradually, a
large peak around 10:30am (and possibly another one around 12:30pm)
represents an abrupt price correction.

In [2]:

logPrices = np.log(prices)
logReturns = np.diff(logPrices)

plt.figure(figsize=(8,2))
plt.plot(np.arange(1, 390), logReturns, c='r')
plt.ylabel('log-returns')
plt.xlabel('Nov 28, 2016')
plt.xticks([30, 90, 150, 210, 270, 330, 390],
 ['10am', '11am', '12pm', '1pm', '2pm', '3pm', '4pm'])
plt.yticks([-0.001, -0.0005, 0, 0.0005, 0.001])
plt.xlim([0, 390]);

[image: ../_images/examples_stockmarketfluctuations_3_0.png]

Online study

bayesloop provides the class OnlineStudy to analyze on-going data
streams and perform model selection for each new data point. In contrast
to other Study types, more than just one transition model can be
assigned to an OnlineStudy instance, using the method
addTransitionModel. Here, we choose to add two distinct scenarios:

	normal: Both volatility and correlation of subsequent returns are
allowed to vary gradually over time, to account for periods with
above average trading activity after market open and before market
close. This scenario therefore represents a smoothly running market.

	chaotic: This scenario assumes that we know nothing about the
value of volatility or correlation. The probability that this
scenario gets assigned in each minute therefore represents the
probability that previously gathered knowledge about market dynamics
cannot explain the last price movement.

By evaluating how likely the chaotic scenario explains each new minute
close price of SPY compared to the normal scenario, we can identify
specific events that lead to extreme fluctuations in intra-day trading.

First, we create a new instance of the OnlineStudy class and set the
observation model introduced above. The keyword argument
storeHistory is set to True, because we want to access the
parameter estimates of all time steps afterwards, not only the estimates
of the last time step.

In [3]:

S = bl.OnlineStudy(storeHistory=True)

L = bl.om.ScaledAR1('rho', bl.oint(-1, 1, 100),
 'sigma', bl.oint(0, 0.006, 400))

S.set(L)

+ Created new study.
 --> Hyper-study
 --> Online study
+ Observation model: Scaled autoregressive process of first order (AR1). Parameter(s): ['rho', 'sigma']

Note: While the parameter rho is naturally constrained to the
interval]-1, 1[, the parameter boundaries of sigma have to be
specified by the user. Typically, one can review past log-return data
and estimate the upper boundary as a multiple of the standard deviation
of past data points.

Both scenarios for the dynamic market behavior are implemented via the
method add. The normal case consists of a combined transition
model that allows both volatility and correlation to perform a Gaussian
random walk. As the standard deviation (magnitude) of the parameter
fluctuations is a-priori unknown, we supply a wide range of possible
values (bl.cint(0, 1.5e-01, 15) for rho, which corresponds to 15
equally spaced values within the closed interval [0, 0.15], and 50
equally spaced values within the interval [0, 1.5$

\cdot
\(10\)^{-4}$] for sigma).

Since we have no prior assumptions about the standard deviations of the
Gaussian random walks, we let bayesloop assign equal probability to
all values. If one wants to analyze more than just one trading day, the
(hyper-)parameter distributions from the end of one day can be used as
the prior distribution for the next day! One might also want to suppress
large variations of rho or sigma with an exponential prior,
e.g.:

bl.tm.GaussianRandomWalk('s1', bl.cint(0, 1.5e-01, 15), target='rho',
 prior=stats.Exponential('expon', 1./3.0e-02))

The chaotic case is implemented by the transition model
Independent. This model sets a flat prior distribution for the
parameters volatility and correlation in each time step. This way,
previous knowledge about the parameters is not used when analyzing a new
data point.

In [4]:

T1 = bl.tm.CombinedTransitionModel(
 bl.tm.GaussianRandomWalk('s1', bl.cint(0, 1.5e-01, 15), target='rho'),
 bl.tm.GaussianRandomWalk('s2', bl.cint(0, 1.5e-04, 50), target='sigma')
)

T2 = bl.tm.Independent()

S.add('normal', T1)
S.add('chaotic', T2)

+ Added transition model: normal (750 combination(s) of the following hyper-parameters: ['s1', 's2'])
+ Added transition model: chaotic (no hyper-parameters)

Before any data points are passed to the study instance, we further
provide prior probabilities for the two scenarios. We expect about one
news announcement containing unexpected information per day and set a
prior probability of \(1/390\) for the chaotic scenario (one
normal trading day consists of 390 trading minutes).

In [5]:

S.setTransitionModelPrior([389/390., 1/390.])

+ Set custom transition model prior.

Finally, we can supply log-return values to the study instance, data
point by data point. We use the step method to infer new parameter
estimates and the updated probabilities of the two scenarios. Note that
in this example, we use a for loop to feed all data points to the
algorithm because all data points are already available. In a real
application of the OnlineStudy class, one can supply each new data
point as it becomes available and analyze it in real-time.

In [6]:

for r in tqdm_notebook(logReturns):
 S.step(r)

+ Start model fit
+ Not enough data points to start analysis. Will wait for more data.
 + Set uniform prior with parameter boundaries.

Volatility spikes

Before we analyze how the probability values of our two market scenarios
change over time, we check whether the inferred temporal evolution of
the time-varying parameters is realistic. Below, the log-returns are
displayed together with the inferred marginal distribution (shaded red)
and mean value (black line) of the volatility parameter, using the
method plotParameterEvolution.

In [7]:

plt.figure(figsize=(8, 4.5))

data plot
plt.subplot(211)
plt.plot(np.arange(1, 390), logReturns, c='r')

plt.ylabel('log-returns')
plt.xticks([30, 90, 150, 210, 270, 330, 390],
 ['10am', '11am', '12pm', '1pm', '2pm', '3pm', '4pm'])
plt.yticks([-0.001, -0.0005, 0, 0.0005, 0.001])
plt.xlim([0, 390])

parameter plot
plt.subplot(212)
S.plot('sigma', color='r')

plt.xticks([28, 88, 148, 208, 268, 328, 388],
 ['10am', '11am', '12pm', '1pm', '2pm', '3pm', '4pm'])
plt.xlabel('Nov 28, 2016')
plt.ylim([0, 0.00075])
plt.xlim([-2, 388]);

[image: ../_images/examples_stockmarketfluctuations_13_0.png]

Note that the volatility estimates of the first few trading minutes are
not as accurate as later ones, as we initialize the algorithm with a
non-informative prior distribution. One could of course provide a custom
prior distribution as a more realistic starting point. Despite this
fade-in period, the period of increased volatility after market open
is captured nicely, as well as the (more subtle) increase in volatility
during the last 45 minutes of the trading day. Large individual
log-return values also result in an volatility spikes (around 10:30am
and more subtle around 12:30pm).

Islands of stability

The persistent random walk model does not only provide information about
the magnitude of price fluctuations, but further quantifies whether
subsequent log-return values are correlated. A positive correlation
coefficient indicates diverging price movements, as a price increase is
more likely followed by another increase, compared to a decrease. In
contrast, a negative correlation coefficient indicates islands of
stability, i.e. trading periods during which prices do not diffuse
randomly (as with a corr. coeff. of zero). Below, we plot the price
evolution of SPY on November 28, together with the inferred marginal
distribution (shaded blue) and the corresponding mean value (black line)
of the time-varying correlation coefficient.

In [8]:

plt.figure(figsize=(8, 4.5))

data plot
plt.subplot(211)
plt.plot(prices)

plt.ylabel('price [USD]')
plt.xticks([30, 90, 150, 210, 270, 330, 390],
 ['10am', '11am', '12pm', '1pm', '2pm', '3pm', '4pm'])
plt.xlim([0, 390])

parameter plot
plt.subplot(212)
S.plot('rho', color='#0000FF')

plt.xticks([28, 88, 148, 208, 268, 328, 388],
 ['10am', '11am', '12pm', '1pm', '2pm', '3pm', '4pm'])
plt.xlabel('Nov 28, 2016')
plt.ylim([-0.4, 0.4])
plt.xlim([-2, 388]);

[image: ../_images/examples_stockmarketfluctuations_15_0.png]

As a correlation coefficient that deviates significantly from zero would
be immediately exploitable to predict future price movements, we mostly
find correlation values near zero (in accordance with the efficient
market hypothesis). However, between 1:15pm and 2:15pm, we find a short
period of negative correlation with a value around -0.2. During this
period, subsequent price movements tend to cancel each other out,
resulting in an unusually strong price stability.

Using the Parser sub-module of bayesloop, we can evaluate the
probability that subsequent return values are negatively correlated. In
the figure below, we tag all time steps with a probability for
rho < 0 of 80% or higher and find that this indicator nicely
identifies the period of increased market stability!

Note: The arbitrary threshold of 80% for our market indicator is of
course chosen with hindsight in this example. In a real application,
more than one trading day of data needs to be analyzed to create robust
indicators!

In [9]:

extract parameter grid values (rho) and corresponding prob. values (p)
rho, p = S.getParameterDistributions('rho')

evaluate Prob.(rho < 0) for all time steps
P = bl.Parser(S)
p_neg_rho = np.array([P('rho < 0.', t=t, silent=True) for t in range(1, 389)])

plotting
plt.figure(figsize=(8, 4.5))
plt.subplot(211)
plt.axhline(y=0.8, lw=1.5, c='g')
plt.plot(p_neg_rho, lw=1.5, c='k')
plt.fill_between(np.arange(len(p_neg_rho)), 0, p_neg_rho > 0.8, lw=0, facecolor='g', alpha=0.5)

plt.xticks([28, 88, 148, 208, 268, 328, 388],
 ['10am', '11am', '12pm', '1pm', '2pm', '3pm', '4pm'])
plt.ylabel('prob. of neg. corr.')
plt.xlim([-2, 388])

plt.subplot(212)
plt.plot(prices)
plt.fill_between(np.arange(2, len(p_neg_rho)+2), 220.2, 220.2 + (p_neg_rho > 0.8)*1.4, lw=0, facecolor='g', alpha=0.5)
plt.ylabel('price [USD]')
plt.xticks([30, 90, 150, 210, 270, 330, 390],
 ['10am', '11am', '12pm', '1pm', '2pm', '3pm', '4pm'])
plt.xlim([0, 390])
plt.ylim([220.2, 221.6])
plt.xlabel('Nov 28, 2016');

[image: ../_images/examples_stockmarketfluctuations_17_0.png]

Automatic tuning

One major advantage of the OnlineStudy class is that it not only
infers the time-varying parameters of the low-level correlated random
walk (the observation model ScaledAR1), but further infers the
magnitude (the standard deviation of the transition model
GaussianRandomWalk) of the parameter fluctuations and thereby tunes
the parameter dynamics as new data arrives. As we can see below (left
sub-figures), both magnitudes - one for rho and one for sigma -
start off at a high level. This is due to our choice of a uniform prior,
assigning equal probability to all hyper-parameter values before seeing
any data. Over time, the algorithm learns that the true parameter
fluctuations are less severe than previously assumed and adjusts the
hyper-parameters accordingly. This newly gained information, summarized
in the hyper-parameter distributions of the last time step (right
sub-figures), could then represent the prior distribution for the next
trading day.

In [10]:

plt.figure(figsize=(8, 4.5))
plt.subplot(221)
S.plot('s1', color='green')
plt.xticks([28, 88, 148, 208, 268, 328, 388],
 ['10am', '11am', '12pm', '1pm', '2pm', '3pm', '4pm'])
plt.xlabel('Nov 28, 2016')
plt.xlim([-2, 388])
plt.ylim([0, 0.06])

plt.subplot(222)
S.plot('s1', t=388, facecolor='green', alpha=0.7)
plt.yticks([])
plt.xticks([0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08], ['0', '1', '2', '3', '4', '5', '6', '7', '8'])
plt.xlabel('s1 ($\cdot 10^{-2}$)')
plt.xlim([-0.005, 0.08])

plt.subplot(223)
S.plot('s2', color='green')
plt.xticks([28, 88, 148, 208, 268, 328, 388],
 ['10am', '11am', '12pm', '1pm', '2pm', '3pm', '4pm'])
plt.xlabel('Nov 28, 2016')
plt.xlim([-2, 388])
plt.ylim([0, 0.0001])

plt.subplot(224)
S.plot('s2', t=388, facecolor='green', alpha=0.7)
plt.yticks([])
plt.xticks([0, 0.00001, 0.00002, 0.00003], ['0', '1', '2', '3'])
plt.xlabel('s2 ($\cdot 10^{-5}$)')
plt.xlim([0, 0.00003])

plt.tight_layout()

[image: ../_images/examples_stockmarketfluctuations_19_0.png]

Real-time model selection

Finally, we investigate which of our two market scenarios - normal vs.
chaotic - can explain the price movements best. Using the method
plot('chaotic'), we obtain the probability values for the chaotic
scenario compared to the normal scenario, with respect to all past
data points:

In [11]:

plt.figure(figsize=(8, 2))
S.plot('chaotic', lw=2, c='k')
plt.xticks([28, 88, 148, 208, 268, 328, 388],
 ['10am', '11am', '12pm', '1pm', '2pm', '3pm', '4pm'])
plt.xlabel('Nov 28, 2016')
plt.xlim([0, 388])
plt.ylabel('p("chaotic")')

Out[11]:

<matplotlib.text.Text at 0xefc86a0>

[image: ../_images/examples_stockmarketfluctuations_21_1.png]

As expected, the probability that the chaotic scenario can explain all
past log-return values at a given point in time quickly falls off to
practically zero. Indeed, a correlated random walk with slowly changing
volatility and correlation of subsequent returns is better suited to
describe the price fluctuations of SPY in the majority of time
steps.

However, we may also ask for the probability that each individual
log-return value is produced by either of the two market scenarios by
using the keyword argument local=True:

In [12]:

plt.figure(figsize=(8, 2))
S.plot('chaotic', local=True, c='k', lw=2)
plt.xticks([28, 88, 148, 208, 268, 328, 388],
 ['10am', '11am', '12pm', '1pm', '2pm', '3pm', '4pm'])
plt.xlabel('Nov 28, 2016')
plt.xlim([0, 388])
plt.ylabel('p("chaotic")')
plt.axvline(58, 0, 1, zorder=1, c='r', lw=1.5, ls='dashed', alpha=0.7)
plt.axvline(178, 0, 1, zorder=1, c='r', lw=1.5, ls='dashed', alpha=0.7);

[image: ../_images/examples_stockmarketfluctuations_23_0.png]

Here, we find clear peaks indicating an increased probability for the
chaotic scenario, i.e. that previously gained information about the
market dynamics has become useless. Lets assume that we are concerned
about market behavior as soon as there is at least a 1% risk that
normal market dynamics can not describe the current price movement.
This leaves us with three distinct events in the following time steps:

In [13]:

p = S.getTransitionModelProbabilities('chaotic', local=True)
np.argwhere(p > 0.01)

Out[13]:

array([[59],
 [181],
 [382]], dtype=int64)

These time steps translate to the following trading minutes: 10:31am,
12:33pm and 3:54pm.

The first peak at 10:31am directly follows the release of the Texas
Manufacturing Outlook
Survey [http://www.dallasfed.org/news/releases/2016/nr161128.cfm] of
the Dallas Fed [http://www.dallasfed.org/]. The publication of this
set of economic indicators has already been announced by financial news
pages [http://finance.yahoo.com/news/10-things-know-opening-bell-113600334.html]
before the market opened. While the title of the survey (“Texas
Manufacturing Activity Continues to Expand”) indicated good news,
investors reacted sceptically, possibly due to negative readings in both
the new orders index and growth rate of orders index (c.f. this
article [http://247wallst.com/economy/2016/11/29/better-news-for-manufacturing-activity-in-texas/]).

Note: This first peak would be more pronounced if we had supplied a
prior distribution that constrains strong parameter fluctuations!

The underlying trigger for the second peak, shortly after 12:30pm,
remains unknown. No major macroeconomic indicators were published at
that time, at least according to some economic news sites (see e.g.
nytimes.com [http://markets.on.nytimes.com/research/economy/indicators/indicators.asp?monthOffset=-3]
or
liveindex.org [https://liveindex.org/46172/2016/11/us-pre-market-news-28-nov-2016/]).

The last peak at 3:54pm is likely connected to the imminent market close
at 4pm. To protect themselves from unexpected news after trading hours,
market participants often close their open positions before market
close, generally leading to an increased volatility. If large market
participants follow this behavior, price corrections may no longer be
explained by normal market dynamics.

This example has shown that bayesloop’s OnlineStudy class can
identify periods of increased volatility as well as periods of increased
price stability (accompanied by a negative correlation of subsequent
returns), and further automatically tunes its current assumptions about
market dynamics. Finally, we have demonstrated that bayesloop serves
as a viable tool to detect “anomalous” price corrections, triggered by
large market participants or news announcements, in real-time.

API Reference

Study types

	Study([silent])

	Fits with fixed hyper-parameters and hyper-parameter optimization.

	HyperStudy([silent])

	Infers hyper-parameter distributions.

	ChangepointStudy([silent])

	Infers change-points and structural breaks.

	OnlineStudy([storeHistory, silent])

	Enables model selection for online data streams.

Note

These Study classes are imported directly into the module namespace for convenient access.

import bayesloop as bl
S = bl.Study()

In bayesloop, each new data study is handled by an instance of a Study-class. In this way, all data, the inference
results and the appropriate post-processing routines are stored in one object that can be accessed conveniently or
stored in a file. Apart from the basic Study class, there exist a number of specialized classes that extend the
basic fit method, for example to infer the full distribution of hyper-parameters or to apply model selection to on-line
data streams.

	
class bayesloop.core.ChangepointStudy(silent=False)

	Infers change-points and structural breaks. This class builds on the HyperStudy-class and the change-point
transition model to perform a series of analyses with varying change point times. It subsequently computes the
average model from all possible change points and creates a probability distribution of change point times. It
supports any number of change-points and arbitarily combined models.

	
fit(forwardOnly=False, evidenceOnly=False, silent=False, nJobs=1)

	This method over-rides the corresponding method of the HyperStudy-class. It runs the algorithm for all possible
combinations of change-points (and possible scans a range of values for other hyper-parameters). The posterior
sequence represents the average model of all analyses. Posterior mean values are computed from this average
model.

	Parameters

	
	forwardOnly (bool [https://docs.python.org/3/library/functions.html#bool]) – If set to True, the fitting process is terminated after the forward pass. The resulting
posterior distributions are so-called “filtering distributions” which - at each time step -
only incorporate the information of past data points. This option thus emulates an online
analysis.

	evidenceOnly (bool [https://docs.python.org/3/library/functions.html#bool]) – If set to True, only forward pass is run and evidence is calculated. In contrast to the
forwardOnly option, no posterior mean values are computed and no posterior distributions are stored.

	silent (bool [https://docs.python.org/3/library/functions.html#bool]) – If set to True, reduced output is generated by the fitting method.

	nJobs (int [https://docs.python.org/3/library/functions.html#int]) – Number of processes to employ. Multiprocessing is based on the ‘pathos’ module.

	
getDD(names, plot=False, **kwargs)

	See ChangepointStudy.getDurationDistribution().

	
getDurationDistribution(names, plot=False, **kwargs)

	Computes the distribution of the number of time steps between two change/break-points. This distribution of
duration is created from the joint distribution of the two specified change/break-points.

	Parameters

	
	names (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of two parameter names of change/break-points to display
(first and second model parameter)

	plot (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, a bar chart of the distribution is created

	**kwargs – All further keyword-arguments are passed to the bar-plot (see matplotlib documentation)

	Returns

	
	The first array contains the number of time steps, the second one the corresponding

	probability values.

	Return type

	ndarray, ndarray

	
class bayesloop.core.HyperStudy(silent=False)

	Infers hyper-parameter distributions. This class serves as an extension to the basic Study class and allows to
compute the distribution of hyper-parameters of a given transition model. For further information, see the
documentation of the fit-method of this class.

	
fit(forwardOnly=False, evidenceOnly=False, silent=False, nJobs=1, customHyperGrid=False)

	This method over-rides the according method of the Study-class. It runs the algorithm for equally spaced hyper-
parameter values as defined by the variable ‘hyperGrid’. The posterior sequence represents the average
model of all analyses. Posterior mean values are computed from this average model.

	Parameters

	
	forwardOnly (bool [https://docs.python.org/3/library/functions.html#bool]) – If set to True, the fitting process is terminated after the forward pass. The resulting
posterior distributions are so-called “filtering distributions” which - at each time step -
only incorporate the information of past data points. This option thus emulates an online
analysis.

	evidenceOnly (bool [https://docs.python.org/3/library/functions.html#bool]) – If set to True, only forward pass is run and evidence is calculated. In contrast to the
forwardOnly option, no posterior mean values are computed and no posterior distributions are stored.

	silent (bool [https://docs.python.org/3/library/functions.html#bool]) – If set to true, reduced output is created by this method.

	nJobs (int [https://docs.python.org/3/library/functions.html#int]) – Number of processes to employ. Multiprocessing is based on the ‘pathos’ module.

	customHyperGrid (bool [https://docs.python.org/3/library/functions.html#bool]) – If set to true, the method “_createHyperGrid” is not called before starting the fit.
This is used by the class “ChangepointStudy”, which employs a custom version of “_createHyperGrid”.

	
getHPD(name, plot=False, **kwargs)

	See HyperStudy.getHyperParameterDistribution().

	
getHyperParameterDistribution(name, plot=False, **kwargs)

	Computes marginal hyper-parameter distribution of a single hyper-parameter in a HyperStudy fit.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the hyper-parameter to display
(first model hyper-parameter)

	plot (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, a bar chart of the distribution is created

	**kwargs – All further keyword-arguments are passed to the bar-plot (see matplotlib documentation)

	Returns

	
	The first array contains the hyper-parameter values, the second one the

	corresponding probability values

	Return type

	ndarray, ndarray

	
getJHPD(names, plot=False, figure=None, subplot=111, **kwargs)

	See HyperStudy.getJointHyperParameterDistribution().

	
getJointHyperParameterDistribution(names, plot=False, figure=None, subplot=111, **kwargs)

	Computes the joint distribution of two hyper-parameters of a HyperStudy and optionally creates a 3D bar chart.
Note that the 3D plot can only be included in an existing plot by passing a figure object and subplot
specification.

	Parameters

	
	names (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of two hyper-parameter names to display

	plot (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, a 3D-bar chart of the distribution is created

	figure – In case the plot is supposed to be part of an existing figure, it can be passed to the method. By
default, a new figure is created.

	subplot – Characterization of subplot alignment, as in matplotlib. Default: 111

	**kwargs – all further keyword-arguments are passed to the bar3d-plot (see matplotlib documentation)

	Returns

	
	The first and second array contains the hyper-parameter values, the

	third one the corresponding probability values

	Return type

	ndarray, ndarray, ndarray

	
optimize(*args, **kwargs)

	Uses the COBYLA minimization algorithm from SciPy to perform a maximization of the log-evidence with respect
to all hyper-parameters (the parameters of the transition model) of a time seris model. The starting values
are the values set by the user when defining the transition model.

For the optimization, only the log-evidence is computed and no parameter distributions are stored. When a local
maximum is found, the parameter distribution is computed based on the optimal values for the hyper-parameters.

	Parameters

	
	parameterList (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of hyper-parameter names to optimize. For nested transition models with multiple,
identical hyper-parameter names, the sub-model index can be provided. By default, all hyper-parameters
are optimized.

	forwardOnly (bool [https://docs.python.org/3/library/functions.html#bool]) – If set to True, the fitting process is terminated after the forward pass. The resulting
posterior distributions are so-called “filtering distributions” which - at each time step -
only incorporate the information of past data points.

	- All other keyword parameters are passed to the 'minimize' routine of scipy.optimize. (**kwargs) –

	
plot(name, **kwargs)

	Convenience method to plot the temporal evolution of observation model parameters, the distribution of a
parameter at a specific time step, or the distribution of a hyper-parameter.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the (hyper-)parameter to display

	color – color from which a light colormap is created (for parameter evolution only)

	gamma (float [https://docs.python.org/3/library/functions.html#float]) – exponent for gamma correction of the displayed marginal distribution; default: 0.5 (for
parameter evolution only)

	t – Time step/stamp for which the parameter distribution is evaluated

	density (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, probability density is plotted; if false, probability values. Note: Only availble
for parameters, not hyper-parameters.

	kwargs – all further keyword-arguments are passed to the axes object of the plot

	
class bayesloop.core.OnlineStudy(storeHistory=False, silent=False)

	Enables model selection for online data streams. This class builds on the Study-class and features a step-method
to include new data points in the study as they arrive from a data stream. This online-analysis is performed in an
forward-only way, resulting in filtering-distributions only. In contrast to a normal study, however, one can add
multiple transition models to account for different types of parameter dynamics (similar to a Hyper study). The
Online study then computes the probability distribution over all transition models for each new data point (or all
past data points), enabling real-time model selection.

	Parameters

	storeHistory (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, posterior distributions and their mean values, as well as hyper-posterior
distributions are stored for all time steps.

	
add(name, transitionModel)

	See OnlineStudy.addTransitionModel().

	
addTM(name, transitionModel)

	See OnlineStudy.addTransitionModel().

	
addTransitionModel(name, transitionModel)

	Adds a transition model to the list of transition models that are fitted in each time step. Note that a list of
hyper-parameter values can be supplied.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – a custom name for this transition model to identify it in post-processing methods

	transitionModel – instance of a transition model class.

Example

Here, ‘S’ denotes the OnlineStudy instance. In the first example, we assume a Poisson observation model and
add a Gaussian random walk with varying standard deviation to the rate parameter ‘lambda’:

S.setObservationModel(bl.om.Poisson(‘lambda’, bl.oint(0, 6, 1000)))
S.addTransitionModel(bl.tm.GaussianRandomWalk(‘sigma’, [0, 0.1, 0.2, 0.3], target=’lambda’))

	
fit(*args, **kwargs)

	This method over-rides the according method of the Study-class. It runs the algorithm for equally spaced hyper-
parameter values as defined by the variable ‘hyperGrid’. The posterior sequence represents the average
model of all analyses. Posterior mean values are computed from this average model.

	Parameters

	
	forwardOnly (bool [https://docs.python.org/3/library/functions.html#bool]) – If set to True, the fitting process is terminated after the forward pass. The resulting
posterior distributions are so-called “filtering distributions” which - at each time step -
only incorporate the information of past data points. This option thus emulates an online
analysis.

	evidenceOnly (bool [https://docs.python.org/3/library/functions.html#bool]) – If set to True, only forward pass is run and evidence is calculated. In contrast to the
forwardOnly option, no posterior mean values are computed and no posterior distributions are stored.

	silent (bool [https://docs.python.org/3/library/functions.html#bool]) – If set to true, reduced output is created by this method.

	nJobs (int [https://docs.python.org/3/library/functions.html#int]) – Number of processes to employ. Multiprocessing is based on the ‘pathos’ module.

	customHyperGrid (bool [https://docs.python.org/3/library/functions.html#bool]) – If set to true, the method “_createHyperGrid” is not called before starting the fit.
This is used by the class “ChangepointStudy”, which employs a custom version of “_createHyperGrid”.

	
getCHPD(name, plot=False, **kwargs)

	See :meth:`.OnlineStudy.getCurrentHyperParameterDistribution.

	
getCPD(name, plot=False, density=True, **kwargs)

	See OnlineStudy.getCurrentParameterDistribution().

	
getCTMD(local=False)

	See OnlineStudy.getCurrentTransitionModelDistribution().

	
getCTMP(transitionModel, local=False)

	See :meth:`.OnlineStudy.getCurrentTransitionModelProbability.

	
getCurrentHyperParameterDistribution(name, plot=False, **kwargs)

	Computes marginal hyper-parameter distribution of a single hyper-parameter at the current time step in an
OnlineStudy fit.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – hyper-parameter name

	plot (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, a bar chart of the distribution is created

	**kwargs – All further keyword-arguments are passed to the bar-plot (see matplotlib documentation)

	Returns

	
	The first array contains the hyper-parameter values, the second one the

	corresponding probability values

	Return type

	ndarray, ndarray

	
getCurrentParameterDistribution(name, plot=False, density=True, **kwargs)

	Compute the current marginal parameter distribution.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the parameter to display

	plot (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, a plot of the distribution is created

	density (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, probability density is plotted; if false, probability values.

	**kwargs – All further keyword-arguments are passed to the plot (see matplotlib documentation)

	Returns

	
	The first array contains the parameter values, the second one the corresponding

	probability values

	Return type

	ndarray, ndarray

	
getCurrentParameterMeanValue(name)

	Returns the posterior mean value for a given parameter of the observation model.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the parameter

	Returns

	posterior mean value

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
getCurrentTransitionModelDistribution(local=False)

	Returns the current probabilities for each transition model defined in the Online Study.

	Parameters

	local (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, transition model distribution taking into account only the last data point is returned.

	Returns

	Arrays of transition model names and normalized probabilities.

	Return type

	ndarray, ndarray

	
getCurrentTransitionModelProbability(transitionModel, local=False)

	Returns the current posterior probability for a specified transition model.

	Parameters

	
	transitionModel (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the transition model

	local (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, transition model probability taking into account only the last data point is returned.

	Returns

	Posterior probability value for the specified transition model

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
getHPD(t, name, plot=False, **kwargs)

	See :meth:`.OnlineStudy.getHyperParameterDistribution.

	
getHPDs(name)

	See :meth:`.OnlineStudy.getHyperParameterDistributions.

	
getHyperParameterDistribution(t, name, plot=False, **kwargs)

	Computes marginal hyper-parameter distribution of a single hyper-parameter at a specific time step in an
OnlineStudy fit. Only available if Online Study is created with flag ‘storeHistory=True’.

	Parameters

	
	t (int [https://docs.python.org/3/library/functions.html#int]) – Time step at which to compute distribution, or ‘avg’ for time-averaged distribution

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – hyper-parameter name

	plot (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, a bar chart of the distribution is created

	**kwargs – All further keyword-arguments are passed to the bar-plot (see matplotlib documentation)

	Returns

	
	The first array contains the hyper-parameter values, the second one the

	corresponding probability values

	Return type

	ndarray, ndarray

	
getHyperParameterDistributions(name)

	Computes marginal hyper-parameter distributions of a single hyper-parameter for all time steps in an
OnlineStudy fit. Only available if Online Study is created with flag ‘storeHistory=True’.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – hyper-parameter name

	Returns

	
	The first array contains the hyper-parameter values, the second one the

	corresponding probability values (first axis is time).

	Return type

	ndarray, ndarray

	
getHyperParameterMeanValue(t, name)

	Computes the mean value of the joint hyper-parameter distribution for a given hyper-parameter at a
given time step. Only available if Online Study is created with flag ‘storeHistory=True’.

	Parameters

	
	t (int [https://docs.python.org/3/library/functions.html#int]) – Time step at which to compute distribution

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of hyper-parameter

	Returns

	Array containing the mean values of all hyper-parameters of the given transition model

	Return type

	ndarray

	
getHyperParameterMeanValues(name)

	Computes the sequence of mean value of the joint hyper-parameter distribution for a given hyper-parameter for
all time steps. Only available if Online Study is created with flag ‘storeHistory=True’.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of hyper-parameter

	Returns

	Array containing the sequences of mean values of the given hyper-parameter

	Return type

	ndarray

	
getJointHyperParameterDistribution(names, plot=False, figure=None, subplot=111, **kwargs)

	Computes the joint distribution of two hyper-parameters of a HyperStudy and optionally creates a 3D bar chart.
Note that the 3D plot can only be included in an existing plot by passing a figure object and subplot
specification.

	Parameters

	
	names (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of two hyper-parameter names to display

	plot (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, a 3D-bar chart of the distribution is created

	figure – In case the plot is supposed to be part of an existing figure, it can be passed to the method. By
default, a new figure is created.

	subplot – Characterization of subplot alignment, as in matplotlib. Default: 111

	**kwargs – all further keyword-arguments are passed to the bar3d-plot (see matplotlib documentation)

	Returns

	
	The first and second array contains the hyper-parameter values, the

	third one the corresponding probability values

	Return type

	ndarray, ndarray, ndarray

	
getPD(t, name, plot=False, density=True, **kwargs)

	See OnlineStudy.getParameterDistribution().

	
getPDs(name, plot=False, density=True, **kwargs)

	See OnlineStudy.getParameterDistributions().

	
getParameterDistribution(t, name, plot=False, density=True, **kwargs)

	Compute the marginal parameter distribution at a given time step. Only available if Online Study is created
with flag ‘storeHistory=True’.

	Parameters

	
	t (int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]) – Time step/stamp for which the parameter distribution is evaluated

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the parameter to display

	plot (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, a plot of the distribution is created

	density (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, probability density is plotted; if false, probability values.

	**kwargs – All further keyword-arguments are passed to the plot (see matplotlib documentation)

	Returns

	
	The first array contains the parameter values, the second one the corresponding

	probability values

	Return type

	ndarray, ndarray

	
getParameterDistributions(name, plot=False, density=True, **kwargs)

	Computes the time series of marginal posterior distributions with respect to a given model parameter. Only
available if Online Study is created with flag ‘storeHistory=True’.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the parameter to display

	plot (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, a plot of the series of distributions is created (density map)

	density (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, probability density is plotted; if false, probability values.

	**kwargs – All further keyword-arguments are passed to the plot (see matplotlib documentation)

	Returns

	
	The first array contains the parameter values, the second one the sequence of

	corresponding posterior distributions.

	Return type

	ndarray, ndarray

	
getParameterMeanValue(t, name)

	Returns the posterior mean value for a given parameter of the observation model at a specified time step. Only
available if Online Study is created with flag ‘storeHistory=True’.

	Parameters

	
	t (int [https://docs.python.org/3/library/functions.html#int]) – Time step at which to compute parameter mean value

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the parameter

	Returns

	posterior mean value

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
getParameterMeanValues(name)

	Returns the posterior mean value for a given parameter of the observation model for all time steps. Only
available if Online Study is created with flag ‘storeHistory=True’.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the parameter

	Returns

	posterior mean values

	Return type

	ndarray

	
getTMPs(transitionModel, local=False)

	See :meth:`.OnlineStudy.getTransitionModelProbabilities.

	
getTransitionModelDistributions(local=False)

	The transition model distribution contains posterior probability values for all transition models included in
the online study. This distribution is available for all time steps analyzed. Only available if Online Study
is created with flag ‘storeHistory=True’.

	Parameters

	local (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, transition model distributions taking into account only the data point at the
corresponding time step is returned.

	Returns

	
	Arrays containing the names and posterior probability values for all transition models

	included in the online study for all time steps analyzed

	Return type

	ndarray, ndarray

	
getTransitionModelProbabilities(transitionModel, local=False)

	Returns posterior probability values for a specified transition model. This distribution is available for all
time steps analyzed. Only available if Online Study is created with flag ‘storeHistory=True’.

	Parameters

	
	transitionModel (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the transition model

	local (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, transition model probabilities taking into account only the data point at the
corresponding time step is returned.

	Returns

	
	Array containing the posterior probability values for the specified transition model for all time

	steps analyzed

transitionModel(str): Name of the transition model

	Return type

	ndarray

	
plot(name, **kwargs)

	Convenience method to plot the temporal evolution of (hyper-)parameters, the distribution of a
(hyper-)parameter at a specific time step, or the temporal evolution of the probability of a transition model.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the (hyper-)parameter or transition model to display

	color – color from which a light colormap is created (for (hyper-)parameter evolution only)

	gamma (float [https://docs.python.org/3/library/functions.html#float]) – exponent for gamma correction of the displayed marginal distribution; default: 0.5 (for
(hyper-)parameter evolution only)

	t – Time step/stamp for which the parameter distribution is evaluated

	density (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, probability density is plotted; if false, probability values. Note: Only availble
for parameters, not hyper-parameters.

	local (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, transition model probabilities taking into account only the data point at the
corresponding time step is returned

	kwargs – all further keyword-arguments are passed to the axes object of the plot

	
plotHyperParameterEvolution(name, color='b', gamma=0.5, **kwargs)

	Plot method to display a series of marginal posterior distributions corresponding to a single model parameter.
This method includes the removal of plotting artefacts, gamma correction as well as an overlay of the posterior
mean values. Only available if Online Study is created with flag ‘storeHistory=True’.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – hyper-parameter name

	color – color from which a light colormap is created

	gamma (float [https://docs.python.org/3/library/functions.html#float]) – exponent for gamma correction of the displayed marginal distribution; default: 0.5

	kwargs – all further keyword-arguments are passed to the plot of the posterior mean values

	
plotParameterEvolution(name, color='b', gamma=0.5, **kwargs)

	Plots a series of marginal posterior distributions corresponding to a single model parameter, together with the
posterior mean values. Only available if Online Study is created with flag ‘storeHistory=True’.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the parameter to display

	color – color from which a light colormap is created

	gamma (float [https://docs.python.org/3/library/functions.html#float]) – exponent for gamma correction of the displayed marginal distribution; default: 0.5

	kwargs – all further keyword-arguments are passed to the plot of the posterior mean values

	
setTransitionModelPrior(transitionModelPrior, silent=False)

	Sets prior probabilities for transition models added to the online study instance.

	Parameters

	
	transitionModelPrior – List/Array of probabilities, one for each transition model. If the list does not sum
to one, it will be re-normalised.

	silent – If true, no output is generated by this method.

	
step(dataPoint)

	Update the current parameter distribution by adding a new data point to the data set.

	Parameters

	dataPoint (float [https://docs.python.org/3/library/functions.html#float], int [https://docs.python.org/3/library/functions.html#int], ndarray) – Float, int, or 1D-array of those (for multidimensional data).

	
class bayesloop.core.Study(silent=False)

	Fits with fixed hyper-parameters and hyper-parameter optimization. This class implements a
forward-backward-algorithm for analyzing time series data using hierarchical models. For efficient computation,
all parameter distributions are discretized on a parameter grid.

	
eval(query, t=None, silent=False)

	Convenience method to evaluate arithmetic operations on (hyper-)parameters. See parser.Parser() for more
information. Note: This method is slow for evaluating a lot of queries subsequently, as it initializes a new
Parser instance for each query. Use a dedicated Parser instance in that case (i.e.: P = Parser(S); P(‘query’)).

	Parameters

	
	query (str [https://docs.python.org/3/library/stdtypes.html#str]) – (In-)equality to compute probability for, or just an arithmetic operation on parameters (the
distribution will be returned in the latter case).

	t – Time step/stamp to evaluate all parameters at

	silent (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, no output is generated by this method.

	Returns

	Probability of queried (in-)equality, or values and corresponding probability values of derived
distribution.

	
fit(forwardOnly=False, evidenceOnly=False, silent=False)

	Computes the sequence of posterior distributions and evidence for each time step. Evidence is also computed for
the complete data set.

	Parameters

	
	forwardOnly (bool [https://docs.python.org/3/library/functions.html#bool]) – If set to True, the fitting process is terminated after the forward pass. The resulting
posterior distributions are so-called “filtering distributions” which - at each time step -
only incorporate the information of past data points. This option thus emulates an online
analysis.

	evidenceOnly (bool [https://docs.python.org/3/library/functions.html#bool]) – If set to True, only forward pass is run and evidence is calculated. In contrast to the
forwardOnly option, no posterior mean values are computed and no posterior distributions are stored.

	silent (bool [https://docs.python.org/3/library/functions.html#bool]) – If set to True, no output is generated by the fitting method.

	
getHyperParameterValue(name)

	Returns the currently set value of a hyper-parameter. Note: The returned value is NOT an inferred value, but
simply the last value used by the fitting method.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Hyper-parameter name.

	Returns

	current value of the specified hyper-parameter.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
getPD(t, name, plot=False, density=True, **kwargs)

	See Study.getParameterDistribution().

	
getPDs(name, plot=False, density=True, **kwargs)

	See Study.getParameterDistributions().

	
getParameterDistribution(t, name, plot=False, density=True, **kwargs)

	Compute the marginal parameter distribution at a given time step.

	Parameters

	
	t – Time step/stamp for which the parameter distribution is evaluated (or ‘avg’ for time-averaged parameter
distribution)

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the parameter to display

	plot (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, a plot of the distribution is created

	density (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, probability density is returned; if false, probability values

	**kwargs – All further keyword-arguments are passed to the plot (see matplotlib documentation)

	Returns

	
	The first array contains the parameter values, the second one the corresponding

	probability (density) values

	Return type

	ndarray, ndarray

	
getParameterDistributions(name, plot=False, density=True, **kwargs)

	Computes the time series of marginal posterior distributions with respect to a given model parameter.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the parameter to display

	plot (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, a plot of the series of distributions is created (density map)

	density (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, probability density is returned; if false, probability values

	**kwargs – All further keyword-arguments are passed to the plot (see matplotlib documentation)

	Returns

	The first array contains the parameter values, the second one the sequence of
corresponding posterior distributions.

	Return type

	ndarray, ndarray

	
getParameterMeanValues(name)

	Returns posterior mean values for a parameter of the observation model.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the parameter to display

	Returns

	array of posterior mean values for the selected parameter

	Return type

	ndarray

	
load(array, timestamps=None, silent=False)

	See Study.loadData().

	
loadData(array, timestamps=None, silent=False)

	Loads Numpy array as data.

	Parameters

	
	array (ndarray) – Numpy array containing time series data

	timestamps (ndarray) – Array of timestamps (same length as data array)

	silent (bool [https://docs.python.org/3/library/functions.html#bool]) – If set to True, no output is generated by this method.

	
loadExampleData(silent=False)

	Loads UK coal mining disaster data.

	Parameters

	silent (bool [https://docs.python.org/3/library/functions.html#bool]) – If set to True, no output is generated by this method.

	
optimize(parameterList=[], forwardOnly=False, **kwargs)

	Uses the COBYLA minimization algorithm from SciPy to perform a maximization of the log-evidence with respect
to all hyper-parameters (the parameters of the transition model) of a time seris model. The starting values
are the values set by the user when defining the transition model.

For the optimization, only the log-evidence is computed and no parameter distributions are stored. When a local
maximum is found, the parameter distribution is computed based on the optimal values for the hyper-parameters.

	Parameters

	
	parameterList (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of hyper-parameter names to optimize. For nested transition models with multiple,
identical hyper-parameter names, the sub-model index can be provided. By default, all hyper-parameters
are optimized.

	forwardOnly (bool [https://docs.python.org/3/library/functions.html#bool]) – If set to True, the fitting process is terminated after the forward pass. The resulting
posterior distributions are so-called “filtering distributions” which - at each time step -
only incorporate the information of past data points.

	- All other keyword parameters are passed to the 'minimize' routine of scipy.optimize. (**kwargs) –

	
plot(name, **kwargs)

	Convenience method to plot the temporal evolution of observation model parameters, or the parameter distribution
at a specific time step. Extended functionality for other study classes.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the parameter to display

	color – color from which a light colormap is created (for parameter evolution only)

	gamma (float [https://docs.python.org/3/library/functions.html#float]) – exponent for gamma correction of the displayed marginal distribution; default: 0.5 (for
parameter evolution only)

	t – Time step/stamp for which the parameter distribution is evaluated

	density (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, probability density is plotted; if false, probability values

	kwargs – all further keyword-arguments are passed to the axes object of the plot

	
plotParameterEvolution(name, color='b', gamma=0.5, **kwargs)

	Extended plot method to display a series of marginal posterior distributions corresponding to a single model
parameter. In contrast to getMarginalParameterDistributions(), this method includes the removal of plotting
artefacts, gamma correction as well as an overlay of the posterior mean values.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the parameter to display

	color – color from which a light colormap is created

	gamma (float [https://docs.python.org/3/library/functions.html#float]) – exponent for gamma correction of the displayed marginal distribution; default: 0.5

	kwargs – all further keyword-arguments are passed to the plot of the posterior mean values

	
set(*args, **kwargs)

	Set observation model or transition model, or both. See Study.setTransitionModel() and
Study.setObservationModel().

	Parameters

	
	args – Sequence of Observation model instance and Transition model instance, or just one of those two types

	silent (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, no output is printed by this method

	
setOM(L, silent=False)

	See Study.setObservationModel().

	
setObservationModel(L, silent=False)

	Sets observation model (likelihood function) for analysis and creates parameter grid for inference routine.

	Parameters

	
	L – Observation model class (see observationModels.py)

	silent (bool [https://docs.python.org/3/library/functions.html#bool]) – If set to True, no output is generated by this method.

	
setTM(T, silent=False)

	See Study.setTransitionModel().

	
setTransitionModel(T, silent=False)

	Set transition model which describes the parameter dynamics.

	Parameters

	
	T – Transition model class (see transitionModels.py)

	silent (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, no output is printed by this method

	
simulate(x, t=None, density=False)

	Computes the probability (density) for a set of observations, based on the inferred parameter distributions of a
given time step, or based on the time-averaged parameter distributions. It can be used to compute the expected
distribution of the observed data, taking into account the uncertainty in the parameters (as well as
hyper-parameters for Hyper-Studies).

	Parameters

	
	x – array of observation values

	t – Time step/stamp for which the parameter distribution is evaluated

	density – If true, probability density is computed; if false, probability value is computed

	Returns

	probability (density) values corresponding to observation values

	Return type

	ndarray

Observation models

	SymPy(rv, *args, **kwargs)

	Model based on sympy.stats random variable.

	SciPy(rv, *args, **kwargs)

	Model based on scipy.stats distribution.

	NumPy(function, *args, **kwargs)

	Model based on NumPy functions.

	Bernoulli([name, value, prior])

	Bernoulli trial.

	Poisson([name, value, prior])

	Poisson observation model.

	Gaussian([name1, value1, name2, value2, prior])

	Gaussian observations.

	GaussianMean([name, value, prior])

	Observations with given error interval.

	WhiteNoise([name, value, prior])

	White noise process.

	AR1([name1, value1, name2, value2, prior])

	Auto-regressive process of first order.

	ScaledAR1([name1, value1, name2, value2, prior])

	Scaled auto-regressive process of first order. Recusively defined as

Note

You can use the short-form om to access all observation models:

import bayesloop as bl
L = bl.om.SymPy(...)

Observation models refer to likelihood functions, describing the probability (density) of a measurement at a certain
time step, given the time-varying parameter values and past measurements. Observation models thus represent the low-
level model in a bayesloop study, as compared to transition models that represent the high-level models and specify
how the time-varying parameter change over time.

	
class bayesloop.observationModels.AR1(name1='correlation coefficient', value1=None, name2='noise amplitude', value2=None, prior=None)

	Auto-regressive process of first order. This model describes a simple stochastic time series model with an
exponential autocorrelation-function. It can be recursively defined as: d_t = r_t * d_(t-1) + s_t * e_t, with d_t
being the data point at time t, r_t the correlation coefficient of subsequent data points and s_t being the noise
amplitude of the process. e_t is distributed according to a standard normal distribution.

	Parameters

	
	name1 (str [https://docs.python.org/3/library/stdtypes.html#str]) – custom name for correlation coefficient

	value1 (list [https://docs.python.org/3/library/stdtypes.html#list], tuple [https://docs.python.org/3/library/stdtypes.html#tuple], ndarray) – Regularly spaced parameter values for the correlation coefficient

	name2 (str [https://docs.python.org/3/library/stdtypes.html#str]) – custom name for noise amplitude

	value2 (list [https://docs.python.org/3/library/stdtypes.html#list], tuple [https://docs.python.org/3/library/stdtypes.html#tuple], ndarray) – Regularly spaced parameter values for the noise amplitude

	prior – custom prior distribution that may be passed as a Numpy array that has tha same shape as the parameter
grid, as a(lambda) function or as a (list of) SymPy random variable(s)

	
estimateParameterValues(name, rawData)

	Returns estimated boundaries based on the imported data. Is called in case fit method is called and no
boundaries are defined.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of a parameter of the observation model

	rawData (ndarray) – observed data points that may be used to determine appropriate parameter boundaries

	Returns

	parameter boundaries.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pdf(grid, dataSegment)

	Probability density function of the Auto-regressive process of first order

	Parameters

	
	grid (list [https://docs.python.org/3/library/stdtypes.html#list]) – Parameter grid for discrete values of the correlation coefficient and noise amplitude

	dataSegment (ndarray) – Data segment from formatted data (in this case a pair of measurements)

	Returns

	Discretized pdf (for data point d_t, given d_(t-1) and parameters).

	Return type

	ndarray

	
class bayesloop.observationModels.Bernoulli(name='p', value=None, prior='Jeffreys')

	Bernoulli trial. This distribution models a random variable that takes the value 1 with a probability of p, and
a value of 0 with the probability of (1-p). Subsequent data points are considered independent. The model has one
parameter, p, which describes the probability of “success”, i.e. to take the value 1.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – custom name for model parameter p

	value (list [https://docs.python.org/3/library/stdtypes.html#list], tuple [https://docs.python.org/3/library/stdtypes.html#tuple], ndarray) – Regularly spaced parameter values for the model parameter p

	prior – custom prior distribution that may be passed as a Numpy array that has tha same shape as the parameter
grid, as a(lambda) function or as a (list of) SymPy random variable(s)

	
estimateParameterValues(name, rawData)

	Returns appropriate boundaries based on the imported data. Is called in case fit method is called and no
boundaries are defined.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of a parameter of the observation model

	rawData (ndarray) – observed data points that may be used to determine appropriate parameter boundaries

	Returns

	Regularly spaced parameter values for the specified parameter.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
jeffreys(x)

	Jeffreys prior for Bernoulli model.

	
pdf(grid, dataSegment)

	Probability density function of the Bernoulli model

	Parameters

	
	grid (list [https://docs.python.org/3/library/stdtypes.html#list]) – Parameter grid for discrete values of the parameter p

	dataSegment (ndarray) – Data segment from formatted data (in this case a single number of events)

	Returns

	Discretized Bernoulli pdf (with same shape as grid)

	Return type

	ndarray

	
class bayesloop.observationModels.Gaussian(name1='mean', value1=None, name2='std', value2=None, prior='Jeffreys')

	Gaussian observations. All observations are independently drawn from a Gaussian distribution. The model has two
parameters, mean and standard deviation.

	Parameters

	
	name1 (str [https://docs.python.org/3/library/stdtypes.html#str]) – custom name for mean

	value1 (list [https://docs.python.org/3/library/stdtypes.html#list], tuple [https://docs.python.org/3/library/stdtypes.html#tuple], ndarray) – Regularly spaced parameter values for the model parameter mean

	name2 (str [https://docs.python.org/3/library/stdtypes.html#str]) – custom name for standard deviation

	value2 (list [https://docs.python.org/3/library/stdtypes.html#list], tuple [https://docs.python.org/3/library/stdtypes.html#tuple], ndarray) – Regularly spaced parameter values for the model parameter standard deviation

	prior – custom prior distribution that may be passed as a Numpy array that has tha same shape as the parameter
grid, as a(lambda) function or as a (list of) SymPy random variable(s)

	
estimateParameterValues(name, rawData)

	Returns appropriate boundaries based on the imported data. Is called in case fit method is called and no
boundaries are defined.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of a parameter of the observation model

	rawData (ndarray) – observed data points that may be used to determine appropriate parameter boundaries

	Returns

	parameter boundaries.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
jeffreys(mu, sigma)

	Jeffreys prior for Gaussian model.

	
pdf(grid, dataSegment)

	Probability density function of the Gaussian model.

	Parameters

	
	grid (list [https://docs.python.org/3/library/stdtypes.html#list]) – Parameter grid for discrete values of mean and standard deviation

	dataSegment (ndarray) – Data segment from formatted data (containing a single measurement)

	Returns

	Discretized Normal pdf (with same shape as grid).

	Return type

	ndarray

	
class bayesloop.observationModels.GaussianMean(name='mean', value=None, prior=None)

	Observations with given error interval. This observation model represents a Gaussian distribution with given
standard deviation, only the mean of the distribution is a free parameter. It can be used if the data at hand
contains for example mean values and corresponding error intervals. The data is supplied as an array of tuples,
where each tuple contains the observed mean value and the corresponding standard deviation for an individual time
step:

[["mean (t=1)", "std (t=1)"], ["mean (t=2)", "std (t=2)"], ...]

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – custom name for the mean parameter

	value (list [https://docs.python.org/3/library/stdtypes.html#list], tuple [https://docs.python.org/3/library/stdtypes.html#tuple], ndarray) – Regularly spaced parameter values for the mean parameter

	prior – custom prior distribution that may be passed as a Numpy array that has tha same shape as the parameter
grid, as a(lambda) function or as a (list of) SymPy random variable(s)

	
estimateParameterValues(name, rawData)

	Returns appropriate boundaries based on the imported data. Is called in case fit method is called and no
boundaries are defined.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of a parameter of the observation model

	rawData (ndarray) – observed data points that may be used to determine appropriate parameter boundaries

	Returns

	parameter boundaries.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pdf(grid, dataSegment)

	Probability density function of the Gaussian mean model.

	Parameters

	
	grid (list [https://docs.python.org/3/library/stdtypes.html#list]) – Parameter grid for discrete values of the mean

	dataSegment (ndarray) – Data segment from formatted data (containing a tuple of observed mean value and the
given standard deviation)

	Returns

	Discretized Normal pdf (with same shape as grid).

	Return type

	ndarray

	
class bayesloop.observationModels.Laplace(name1='mean', value1=None, name2='scale', value2=None, prior='Jeffreys')

	Laplace model. All observations are independently drawn from a Laplace (double-sided exponential) distribution. The
model has two parameters, mean and scale.

	Parameters

	
	name1 (str [https://docs.python.org/3/library/stdtypes.html#str]) – custom name for mean

	value1 (list [https://docs.python.org/3/library/stdtypes.html#list], tuple [https://docs.python.org/3/library/stdtypes.html#tuple], ndarray) – Regularly spaced parameter values for the model parameter mean

	name2 (str [https://docs.python.org/3/library/stdtypes.html#str]) – custom name for the scale parameter

	value2 (list [https://docs.python.org/3/library/stdtypes.html#list], tuple [https://docs.python.org/3/library/stdtypes.html#tuple], ndarray) – Regularly spaced parameter values for the scale parameter

	prior – custom prior distribution that may be passed as a Numpy array that has tha same shape as the parameter
grid, as a(lambda) function or as a (list of) SymPy random variable(s)

	
estimateParameterValues(name, rawData)

	Returns appropriate boundaries based on the imported data. Is called in case fit method is called and no
boundaries are defined.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of a parameter of the observation model

	rawData (ndarray) – observed data points that may be used to determine appropriate parameter boundaries

	Returns

	parameter boundaries.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
jeffreys(mu, scale)

	Jeffreys prior for the Laplace model.

	
pdf(grid, dataSegment)

	Probability density function of the Laplace model.

	Parameters

	
	grid (list [https://docs.python.org/3/library/stdtypes.html#list]) – Parameter grid for discrete values of mean and scale

	dataSegment (ndarray) – Data segment from formatted data (containing a single measurement)

	Returns

	Discretized Normal pdf (with same shape as grid).

	Return type

	ndarray

	
class bayesloop.observationModels.NumPy(function, *args, **kwargs)

	Model based on NumPy functions. This observation model class allows the user to create new observation models by
expressing the likelihood function as a Python function that takes a data point (or vector) and arrays of parameter
values as input, and outputs the probability density of those parameter values. Note that the Python function must
be able to broadcast the arrays of parameter values, so that the output array has the same shape as the input
arrays.

	Parameters

	
	function – Likelihood function that takes a data point as the first argument and one NumPy array per model
parameter (see example below).

	args – succession of names and corresponding parameter values (using bayesloop.cint() or
bayesloop.oint()) Example: ‘mu’, bl.cint(-1, 1, 100), ‘sigma’, bl.oint(0, 3, 100)

	prior – custom prior distribution that may be passed as a NumPy array that has tha same shape as the parameter
grid, as a(lambda) function or as a (list of) SymPy random variable(s)

Example:

Assume that we have a data set of Gaussian random variates. We know the standard deviation for each random
variate, but not the mean value. The data has the form [[variate_1, std_1], [variate_2, std_2], ...]. We can
design an observation model to infer the mean value of the data taking into account the known standard
deviation as follows:

import bayesloop as bl
S = bl.Study()

data = np.array([[0.12, 0.2], [-0.23, 0.2], [-0.03, 0.1], [0.12, 0.1]])
S.loadData(data)

def likelihood(data, mu):
 # read in one data point of the form [variate_n, std_n]
 x, std = data

 # define Gaussian likelihood function (pdf) with known standard deviation
 pdf = np.exp((x - mu)**2./(2*std**2.))/np.sqrt(2*np.pi*std**2.)

 return pdf

L = bl.om.NumPy(likelihood, 'mu', bl.cint(-3, 3, 1000))
S.setOM(L)

	
pdf(grid, dataSegment)

	Probability density function of custom models

	Parameters

	
	grid (list [https://docs.python.org/3/library/stdtypes.html#list]) – Parameter grid for discrete parameter values

	dataSegment (ndarray) – Data segment from formatted data

	Returns

	Discretized pdf (with same shape as grid)

	Return type

	ndarray

	
class bayesloop.observationModels.ObservationModel

	Observation model class that handles missing data points and multi-dimensional data. All observation
models included in bayesloop inherit from this class.

	
processedPdf(grid, dataSegment)

	This method is called by the fit-method of the Study class (and the step method of the OnlineStudy class) and
processes multidimensional data and missing data and passes it to the pdf-method of the child class.

	Parameters

	
	grid (list [https://docs.python.org/3/library/stdtypes.html#list]) – Discrete parameter grid

	dataSegment (ndarray) – Data segment from formatted data

	Returns

	Discretized pdf (with same shape as grid)

	Return type

	ndarray

	
class bayesloop.observationModels.Poisson(name='lambda', value=None, prior='Jeffreys')

	Poisson observation model. Subsequent data points are considered independent and distributed according to the
Poisson distribution. Input data consists of integer values, typically the number of events in a fixed time
interval. The model has one parameter, often denoted by lambda, which describes the rate of the modeled events.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – custom name for rate parameter lambda

	value (list [https://docs.python.org/3/library/stdtypes.html#list], tuple [https://docs.python.org/3/library/stdtypes.html#tuple], ndarray) – Regularly spaced parameter values for the model parameter lambda

	prior – custom prior distribution that may be passed as a Numpy array that has tha same shape as the parameter
grid, as a(lambda) function or as a (list of) SymPy random variable(s)

	
estimateParameterValues(name, rawData)

	Returns appropriate boundaries based on the imported data. Is called in case fit method is called and no
boundaries are defined.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of a parameter of the observation model

	rawData (ndarray) – observed data points that may be used to determine appropriate parameter boundaries

	Returns

	parameter boundaries.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
jeffreys(x)

	Jeffreys prior for Poisson model.

	
pdf(grid, dataSegment)

	Probability density function of the Poisson model

	Parameters

	
	grid (list [https://docs.python.org/3/library/stdtypes.html#list]) – Parameter grid for discrete rate (lambda) values

	dataSegment (ndarray) – Data segment from formatted data (in this case a single number of events)

	Returns

	Discretized Poisson pdf (with same shape as grid)

	Return type

	ndarray

	
class bayesloop.observationModels.ScaledAR1(name1='correlation coefficient', value1=None, name2='standard deviation', value2=None, prior=None)

	
	Scaled auto-regressive process of first order. Recusively defined as

	d_t = r_t * d_(t-1) + s_t*sqrt(1 - (r_t)^2) * e_t,

with r_t the correlation coefficient of subsequent data points and s_t being the standard deviation of the
observations d_t. For the standard AR1 process, s_t defines the noise amplitude of the process. For uncorrelated
data, the two observation models are equal.

	Parameters

	
	name1 (str [https://docs.python.org/3/library/stdtypes.html#str]) – custom name for correlation coefficient

	value1 (list [https://docs.python.org/3/library/stdtypes.html#list], tuple [https://docs.python.org/3/library/stdtypes.html#tuple], ndarray) – Regularly spaced parameter values for the correlation coefficient

	name2 (str [https://docs.python.org/3/library/stdtypes.html#str]) – custom name for standard deviation

	value2 (list [https://docs.python.org/3/library/stdtypes.html#list], tuple [https://docs.python.org/3/library/stdtypes.html#tuple], ndarray) – Regularly spaced parameter values for the standard deviation

	prior – custom prior distribution that may be passed as a Numpy array that has tha same shape as the parameter
grid, as a(lambda) function or as a (list of) SymPy random variable(s)

	
estimateParameterValues(name, rawData)

	Returns estimated boundaries based on the imported data. Is called in case fit method is called and no
boundaries are defined.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of a parameter of the observation model

	rawData (ndarray) – observed data points that may be used to determine appropriate parameter boundaries

	Returns

	parameter boundaries.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pdf(grid, dataSegment)

	Probability density function of the Auto-regressive process of first order

	Parameters

	
	grid (list [https://docs.python.org/3/library/stdtypes.html#list]) – Parameter grid for discerete values of the correlation coefficient and standard deviation

	dataSegment (ndarray) – Data segment from formatted data (in this case a pair of measurements)

	Returns

	Discretized pdf (for data point d_t, given d_(t-1) and parameters).

	Return type

	ndarray

	
class bayesloop.observationModels.SciPy(rv, *args, **kwargs)

	Model based on scipy.stats distribution. This observation model class allows to create new observation models
on-the-fly from scipy.stats probability distributions.

	Parameters

	
	rv – SciPy random distribution

	args – succession of names and corresponding parameter values (using bayesloop.cint() or
bayesloop.oint()) Example: ‘mu’, bl.cint(-1, 1, 100), ‘sigma’, bl.oint(0, 3, 100)

	fixedParameters (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary defining the names and values of fixed parameters

	prior – custom prior distribution that may be passed as a Numpy array that has tha same shape as the parameter
grid, as a(lambda) function or as a (list of) SymPy random variable(s)

Note that scipy.stats does not use the canonical way of naming the parameters of the probability distributions, but
instead includes the parameter ‘loc’ (for discrete & continuous distributions) and ‘scale’ (for continuous only).

See http://docs.scipy.org/doc/scipy/reference/stats.html for further information on the available distributions and
the parameter notation.

Example:

import bayesloop as bl
import scipy.stats
L = bl.om.SciPy(scipy.stats.poisson, 'mu', bl.oint(0, 6, 1000), fixedParameters={'loc': 0})

This will result in a model for poisson-distributed observations with a rate parameter ‘mu’ between 0 and 6. The
distribution is not shifted (loc = 0).

Note that while the parameters ‘loc’ and ‘scale’ have default values in scipy.stats and do not necessarily need
to be set, they have to be added to the fixedParameters dictionary in bayesloop to be treated as a constant.
Using SciPy.stats distributions, bayesloop uses a flat prior by default.

	
pdf(grid, dataSegment)

	Probability density function of custom scipy.stats models

	Parameters

	
	grid (list [https://docs.python.org/3/library/stdtypes.html#list]) – Parameter grid for discrete rate values

	dataSegment (ndarray) – Data segment from formatted data

	Returns

	Discretized pdf (with same shape as grid)

	Return type

	ndarray

	
class bayesloop.observationModels.SymPy(rv, *args, **kwargs)

	Model based on sympy.stats random variable. This observation model class allows to create new observation models
on-the-fly from sympy.stats random variables.

	Parameters

	
	rv – SymPy random symbol

	args – succession of names and corresponding parameter values (using bayesloop.cint() or
bayesloop.oint()) Example: ‘mu’, bl.cint(-1, 1, 100), ‘sigma’, bl.oint(0, 3, 100)

	determineJeffreysPrior (bool [https://docs.python.org/3/library/functions.html#bool]) – If set to true, Jeffreys prior is analytically derived

	prior – custom prior distribution that may be passed as a Numpy array that has tha same shape as the parameter
grid, as a(lambda) function or as a (list of) SymPy random variable(s)

Observation models can be defined symbolically using the SymPy module in a convenient way. In contrast to the
SciPy probability distributions, fixed parameters are directly set and do not have to be passed as a dictionary.

See http://docs.sympy.org/dev/modules/stats.html for further information on the available distributions and the
parameter notation.

Example:

import bayesloop as bl
from sympy import Symbol
from sympy.stats import Normal

mu = 4
sigma = Symbol('sigma', positive=True)
rv = Normal('normal', mu, sigma)

L = bl.om.SymPy(rv, {'sigma': bl.oint(0, 3, 1000)})

This will result in a model for normally distributed observations with a fixed ‘mu’ (mean) of 4, leaving ‘sigma’
(the standard deviation) as the only free parameter to be inferred. Using SymPy random variables to create an
observation model, bayesloop tries to determine the corresponding Jeffreys prior. This behavior can be turned
off by setting the keyword-argument ‘determineJeffreysPrior=False’.

	
pdf(grid, dataSegment)

	Probability density function of custom sympy.stats models

	Parameters

	
	grid (list [https://docs.python.org/3/library/stdtypes.html#list]) – Parameter grid for discrete rate values

	dataSegment (ndarray) – Data segment from formatted data

	Returns

	Discretized pdf (with same shape as grid)

	Return type

	ndarray

	
class bayesloop.observationModels.WhiteNoise(name='std', value=None, prior='Jeffreys')

	White noise process. All observations are independently drawn from a Gaussian distribution with zero mean and
a finite standard deviation, the noise amplitude. This process is basically an auto-regressive process with zero
correlation.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – custom name for standard deviation

	value (list [https://docs.python.org/3/library/stdtypes.html#list], tuple [https://docs.python.org/3/library/stdtypes.html#tuple], ndarray) – Regularly spaced parameter values for the model parameter standard deviation

	prior – custom prior distribution that may be passed as a Numpy array that has tha same shape as the parameter
grid, as a(lambda) function or as a (list of) SymPy random variable(s)

	
estimateParameterValues(name, rawData)

	Returns appropriate boundaries based on the imported data. Is called in case fit method is called and no
boundaries are defined.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of a parameter of the observation model

	rawData (ndarray) – observed data points that may be used to determine appropriate parameter boundaries

	Returns

	parameter boundaries.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
jeffreys(sigma)

	Jeffreys prior for Gaussian model.

	
pdf(grid, dataSegment)

	Probability density function of the white noise process.

	Parameters

	
	grid (list [https://docs.python.org/3/library/stdtypes.html#list]) – Parameter grid for discrete values of noise amplitude

	dataSegment (ndarray) – Data segment from formatted data (containing a single measurement)

	Returns

	Discretized pdf (with same shape as grid).

	Return type

	ndarray

Transition models

	Static()

	Constant parameters over time.

	Deterministic([function, target, prior])

	Deterministic parameter variations.

	GaussianRandomWalk([name, value, target, prior])

	Gaussian parameter fluctuations.

	AlphaStableRandomWalk([name1, value1, …])

	Parameter changes follow alpha-stable distribution.

	ChangePoint([name, value, prior])

	Abrupt parameter change at a specified time step.

	RegimeSwitch([name, value, prior])

	Small probability for a parameter jump in each time step.

	Independent()

	Observations are treated as independent.

	NotEqual([name, value, prior])

	Unlikely parameter values are preferred in the next time step.

	CombinedTransitionModel(*args)

	Different models act at the same time.

	SerialTransitionModel(*args)

	Different models act at different time steps.

Note

You can use the short-form tm to access all transition models:

import bayesloop as bl
T = bl.tm.ChangePoint(...)

Transition models refer to stochastic or deterministic models that describe how the time-varying parameter values of a
given time series model change from one time step to another. The transition model can thus be compared to the state
transition matrix of Hidden Markov models. However, instead of explicitly stating transition probabilities for all
possible states, a transformation is defined that alters the distribution of the model parameters in one time step
according to the transition model. This altered distribution is subsequently used as a prior distribution in the next
time step.

	
class bayesloop.transitionModels.AlphaStableRandomWalk(name1='c', value1=None, name2='alpha', value2=None, target=None, prior=(None, None))

	Parameter changes follow alpha-stable distribution. This model assumes that parameter changes are distributed
according to the symmetric alpha-stable distribution. For each parameter, two hyper-parameters can be set: the
width of the distribution (c) and the shape (alpha).

	Parameters

	
	name1 (str [https://docs.python.org/3/library/stdtypes.html#str]) – custom name of the hyper-parameter c

	value1 (float [https://docs.python.org/3/library/functions.html#float], list [https://docs.python.org/3/library/stdtypes.html#list], tuple [https://docs.python.org/3/library/stdtypes.html#tuple], ndarray) – width(s) of the distribution (c >= 0).

	name2 (str [https://docs.python.org/3/library/stdtypes.html#str]) – custom name of the hyper-parameter alpha

	value2 (float [https://docs.python.org/3/library/functions.html#float], list [https://docs.python.org/3/library/stdtypes.html#list], tuple [https://docs.python.org/3/library/stdtypes.html#tuple], ndarray) – shape(s) of the distribution (0 < alpha <= 2).

	target (str [https://docs.python.org/3/library/stdtypes.html#str]) – parameter name of the observation model to apply transition model to

	prior – list of two hyper-prior distributions, where each may be passed as a(lambda) function, as a SymPy random
variable, or directly as a Numpy array with probability values for each hyper-parameter value

	
computeForwardPrior(posterior, t)

	Compute new prior from old posterior (moving forwards in time).

	Parameters

	
	posterior (ndarray) – Parameter distribution from current time step

	t (int [https://docs.python.org/3/library/functions.html#int]) – integer time step

	Returns

	Prior parameter distribution for subsequent time step

	Return type

	ndarray

	
convolve(distribution)

	Convolves distribution with alpha-stable kernel.

	Parameters

	distribution (ndarray) – Discrete probability distribution to convolve.

	Returns

	convolution

	Return type

	ndarray

	
createKernel(c, alpha, axis)

	Create alpha-stable distribution on a grid as a kernel for convolution.

	Parameters

	
	c (float [https://docs.python.org/3/library/functions.html#float]) – Scale parameter.

	alpha (float [https://docs.python.org/3/library/functions.html#float]) – Tail parameter (alpha = 1: Cauchy, alpha = 2: Gauss)

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Axis along which the distribution is defined, for 2D-Kernels

	Returns

	kernel

	Return type

	ndarray

	
class bayesloop.transitionModels.BreakPoint(name='tBreak', value=None, prior=None)

	Break-point. This class can only be used to specify break-point within a SerialTransitionModel instance.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – custom name of the hyper-parameter tBreak

	value (int [https://docs.python.org/3/library/functions.html#int], list [https://docs.python.org/3/library/stdtypes.html#list], tuple [https://docs.python.org/3/library/stdtypes.html#tuple], ndarray) – Value(s) of the time step(s) of the break point

	prior – hyper-prior distribution that may be passed as a(lambda) function, as a SymPy random variable, or
directly as a Numpy array with probability values for each hyper-parameter value

	
class bayesloop.transitionModels.ChangePoint(name='tChange', value=None, prior=None)

	Abrupt parameter change at a specified time step. Parameter values are allowed to change only at a single point in
time, right after a specified time step (Hyper-parameter tChange). Note that a uniform parameter distribution is
used at this time step to achieve this “reset” of parameter values.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – custom name of the hyper-parameter tChange

	value (int [https://docs.python.org/3/library/functions.html#int], list [https://docs.python.org/3/library/stdtypes.html#list], tuple [https://docs.python.org/3/library/stdtypes.html#tuple], ndarray) – Integer value(s) of the time step of the change point

	prior – hyper-prior distribution that may be passed as a(lambda) function, as a SymPy random variable, or
directly as a Numpy array with probability values for each hyper-parameter value

	
computeForwardPrior(posterior, t)

	Compute new prior from old posterior (moving forwards in time).

	Parameters

	
	posterior (ndarray) – Parameter distribution from current time step

	t (int [https://docs.python.org/3/library/functions.html#int]) – integer time step

	Returns

	Prior parameter distribution for subsequent time step

	Return type

	ndarray

	
class bayesloop.transitionModels.CombinedTransitionModel(*args)

	Different models act at the same time. This class allows to combine different transition models to be
able to explore more complex parameter dynamics. All sub-models are passed to this class as arguments on
initialization. Note that a different order of the sub-models can result in different parameter dynamics.

	Parameters

	*args – Sequence of transition models

	
computeForwardPrior(posterior, t)

	Compute new prior from old posterior (moving forwards in time).

	Parameters

	
	posterior (ndarray) – Parameter distribution from current time step

	t (int [https://docs.python.org/3/library/functions.html#int]) – integer time step

	Returns

	Prior parameter distribution for subsequent time step

	Return type

	ndarray

	
class bayesloop.transitionModels.Deterministic(function=None, target=None, prior=None)

	Deterministic parameter variations. Given a function with time as the first argument and further keyword-arguments
as hyper-parameters, plus the name of a parameter of the observation model that is supposed to follow this function
over time, this transition model shifts the parameter distribution accordingly. Note that these models are entirely
deterministic, as the hyper-parameter values are entered by the user. However, the hyper-parameter distributions can
be inferred using a Hyper-study or can be optimized using the ‘optimize’ method of the Study class.

	Parameters

	
	function (function) – A function that takes the time as its first argument and further takes keyword-arguments
that correspond to the hyper-parameters of the transition model which the function defines.

	target (str [https://docs.python.org/3/library/stdtypes.html#str]) – The observation model parameter that is manipulated according to the function defined above.

	prior – List of hyper-prior distributions (one for each hyper-parameter), where each may be passed as a(lambda)
function, as a SymPy random variable, or directly as a Numpy array with probability values for each
hyper-parameter value

Example:

def quadratic(t, a=0, b=0):
 return a*(t**2) + b*t

S = bl.Study()
...
S.setObservationModel(bl.om.WhiteNoise('std', bl.oint(0, 3, 1000)))
S.setTransitionModel(bl.tm.Deterministic(quadratic, target='signal'))

	
computeForwardPrior(posterior, t)

	Compute new prior from old posterior (moving forwards in time).

	Parameters

	
	posterior (ndarray) – Parameter distribution from current time step

	t (int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]) – time stamp (integer time index by default)

	Returns

	Prior parameter distribution for subsequent time step

	Return type

	ndarray

	
class bayesloop.transitionModels.GaussianRandomWalk(name='sigma', value=None, target=None, prior=None)

	Gaussian parameter fluctuations. This model assumes that parameter changes are Gaussian-distributed. The standard
deviation can be set individually for each model parameter.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – custom name of the hyper-parameter sigma

	value (float [https://docs.python.org/3/library/functions.html#float], list [https://docs.python.org/3/library/stdtypes.html#list], tuple [https://docs.python.org/3/library/stdtypes.html#tuple], ndarray) – standard deviation(s) of the Gaussian random walk for target parameter

	target (str [https://docs.python.org/3/library/stdtypes.html#str]) – parameter name of the observation model to apply transition model to

	prior – hyper-prior distribution that may be passed as a(lambda) function, as a SymPy random variable, or
directly as a Numpy array with probability values for each hyper-parameter value

	
computeForwardPrior(posterior, t)

	Compute new prior from old posterior (moving forwards in time).

	Parameters

	
	posterior (ndarray) – Parameter distribution from current time step

	t (int [https://docs.python.org/3/library/functions.html#int]) – integer time step

	Returns

	Prior parameter distribution for subsequent time step

	Return type

	ndarray

	
class bayesloop.transitionModels.Independent

	Observations are treated as independent. This transition model restores the prior distribution for the parameters
at each time step, effectively assuming independent observations.

Note

Mostly used with an instance of OnlineStudy.

	
computeForwardPrior(posterior, t)

	Compute new prior from old posterior (moving forwards in time).

	Parameters

	
	posterior (ndarray) – Parameter distribution from current time step

	t (int [https://docs.python.org/3/library/functions.html#int]) – integer time step

	Returns

	Prior parameter distribution for subsequent time step

	Return type

	ndarray

	
class bayesloop.transitionModels.NotEqual(name='log10pMin', value=None, prior=None)

	Unlikely parameter values are preferred in the next time step. Assumes an “inverse” parameter distribution at each
new time step. The new prior is derived by substracting the posterior probability values from their maximal value
and subsequently re-normalizing. To assure that no parameter value is set to zero probability, one may specify a
minimal probability for all parameter values. This transition model is mostly used in instances of OnlineStudy to
detect time step when parameter distributions change significantly.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – custom name of the hyper-parameter log10pMin

	value (float [https://docs.python.org/3/library/functions.html#float], list [https://docs.python.org/3/library/stdtypes.html#list], tuple [https://docs.python.org/3/library/stdtypes.html#tuple], ndarray) – Log10-value of the minimal probability that is set to all possible
parameter values of the inverted parameter distribution

	prior – hyper-prior distribution that may be passed as a(lambda) function, as a SymPy random variable, or
directly as a Numpy array with probability values for each hyper-parameter value

Note

Mostly used with an instance of OnlineStudy.

	
computeForwardPrior(posterior, t)

	Compute new prior from old posterior (moving forwards in time).

	Parameters

	
	posterior (ndarray) – Parameter distribution from current time step

	t (int [https://docs.python.org/3/library/functions.html#int]) – integer time step

	Returns

	Prior parameter distribution for subsequent time step

	Return type

	ndarray

	
class bayesloop.transitionModels.RegimeSwitch(name='log10pMin', value=None, prior=None)

	Small probability for a parameter jump in each time step. In case the number of change-points in a given data set
is unknown, the regime-switching model may help to identify potential abrupt changes in parameter values. At each
time step, all parameter values within the set boundaries are assigned a minimal probability density of being
realized in the next time step, effectively allowing abrupt parameter changes at every time step.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – custom name of the hyper-parameter log10pMin

	value (float [https://docs.python.org/3/library/functions.html#float], list [https://docs.python.org/3/library/stdtypes.html#list], tuple [https://docs.python.org/3/library/stdtypes.html#tuple], ndarray) – Minimal probability density (log10 value) that is assigned to every
parameter value

	prior – hyper-prior distribution that may be passed as a(lambda) function, as a SymPy random variable, or
directly as a Numpy array with probability values for each hyper-parameter value

	
computeForwardPrior(posterior, t)

	Compute new prior from old posterior (moving forwards in time).

	Parameters

	
	posterior (ndarray) – Parameter distribution from current time step

	t (int [https://docs.python.org/3/library/functions.html#int]) – integer time step

	Returns

	Prior parameter distribution for subsequent time step

	Return type

	ndarray

	
class bayesloop.transitionModels.SerialTransitionModel(*args)

	Different models act at different time steps. To model fundamental changes in parameter dynamics, different
transition models can be serially coupled. Depending on the time step, a corresponding sub-model is chosen to
compute the new prior distribution from the posterior distribution. If a break-point lies in between two transition
models, the parameter values do not change abruptly at the time step of the break-point, whereas a change-point not
only changes the transition model, but also allows the parameters to change (the parameter distribution is re-set to
the prior distribution).

	Parameters

	*args – Sequence of transition models and break-points/change-points (for n models, n-1
break-points/change-points have to be provided)

Example:

T = bl.tm.SerialTransitionModel(bl.tm.Static(),
 bl.tm.BreakPoint('t_1', 50),
 bl.tm.RegimeSwitch('log10pMin', -7),
 bl.tm.BreakPoint('t_2', 100),
 bl.tm.GaussianRandomWalk('sigma', 0.2, target='x'))

In this example, parameters are assumed to be constant until ‘t_1’ (time step 50), followed by a regime-switching-
process until ‘t_2’ (time step 100). Finally, we assume Gaussian parameter fluctuations for parameter ‘x’ until the
last time step. Note that models and time steps do not necessarily have to be passed in an alternating way.

	
computeForwardPrior(posterior, t)

	Compute new prior from old posterior (moving forwards in time).

	Parameters

	
	posterior (ndarray) – Parameter distribution from current time step

	t (int [https://docs.python.org/3/library/functions.html#int]) – integer time step

	Returns

	Prior parameter distribution for subsequent time step

	Return type

	ndarray

	
class bayesloop.transitionModels.Static

	Constant parameters over time. This trivial model assumes no change of parameter values over time.

	
computeForwardPrior(posterior, t)

	Compute new prior from old posterior (moving forwards in time).

	Parameters

	
	posterior (ndarray) – Parameter distribution from current time step

	t (int [https://docs.python.org/3/library/functions.html#int]) – integer time step

	Returns

	Prior parameter distribution for subsequent time step

	Return type

	ndarray

	
class bayesloop.transitionModels.TransitionModel

	Parent class for transition models. All transition models inherit from this class. It is currently only used to
identify transition models as such.

File I/O

The following functions save or load instances of all Study types using the Python package dill.

	
bayesloop.fileIO.load(filename)

	Load an instance of a bayesloop study class that was saved using the bayesloop.save() function.

	Parameters

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path + filename to stored bayesloop study

	Returns

	Study instance

	
bayesloop.fileIO.save(filename, study)

	Save an instance of a bayesloop study class to file.

	Parameters

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path + filename to store bayesloop study

	study – Instance of study class (Study, HyperStudy, etc.)

Note

Both file I/O functions are imported directly into the module namespace for convenient access.

import bayesloop as bl
S = bl.Study()
...
bl.save('test.bl', S)
...
S = bl.load('test.bl')

Probability Parser

	
class bayesloop.Parser(*studies)

	Computes derived probability values and distributions based on arithmetic operations of (hyper-)parameters.

	Parameters

	studies – One or more bayesloop study instances. All (hyper-)parameters in the specified study object(s) will be
available to the parser.

Example:

S = bl.Study()
...
P = bl.Parser(S)
P('sqrt(rate@1910) > 1.')

 Python Module Index

 b

 		 	

 		
 b	

 	[image: -]
 	
 bayesloop	

 	
 	
 bayesloop.core	

 	
 	
 bayesloop.fileIO	

 	
 	
 bayesloop.observationModels	

 	
 	
 bayesloop.transitionModels	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | N
 | O
 | P
 | R
 | S
 | T
 | W

A

 	
 	add() (bayesloop.core.OnlineStudy method)

 	addTM() (bayesloop.core.OnlineStudy method)

 	
 	addTransitionModel() (bayesloop.core.OnlineStudy method)

 	AlphaStableRandomWalk (class in bayesloop.transitionModels)

 	AR1 (class in bayesloop.observationModels)

B

 	
 	bayesloop.core (module)

 	bayesloop.fileIO (module)

 	bayesloop.observationModels (module)

 	
 	bayesloop.transitionModels (module)

 	Bernoulli (class in bayesloop.observationModels)

 	BreakPoint (class in bayesloop.transitionModels)

C

 	
 	ChangePoint (class in bayesloop.transitionModels)

 	ChangepointStudy (class in bayesloop.core)

 	CombinedTransitionModel (class in bayesloop.transitionModels)

 	computeForwardPrior() (bayesloop.transitionModels.AlphaStableRandomWalk method)

 	(bayesloop.transitionModels.ChangePoint method)

 	(bayesloop.transitionModels.CombinedTransitionModel method)

 	(bayesloop.transitionModels.Deterministic method)

 	(bayesloop.transitionModels.GaussianRandomWalk method)

 	(bayesloop.transitionModels.Independent method)

 	(bayesloop.transitionModels.NotEqual method)

 	(bayesloop.transitionModels.RegimeSwitch method)

 	(bayesloop.transitionModels.SerialTransitionModel method)

 	(bayesloop.transitionModels.Static method)

 	
 	convolve() (bayesloop.transitionModels.AlphaStableRandomWalk method)

 	createKernel() (bayesloop.transitionModels.AlphaStableRandomWalk method)

D

 	
 	Deterministic (class in bayesloop.transitionModels)

E

 	
 	estimateParameterValues() (bayesloop.observationModels.AR1 method)

 	(bayesloop.observationModels.Bernoulli method)

 	(bayesloop.observationModels.Gaussian method)

 	(bayesloop.observationModels.GaussianMean method)

 	(bayesloop.observationModels.Laplace method)

 	(bayesloop.observationModels.Poisson method)

 	(bayesloop.observationModels.ScaledAR1 method)

 	(bayesloop.observationModels.WhiteNoise method)

 	
 	eval() (bayesloop.core.Study method)

F

 	
 	fit() (bayesloop.core.ChangepointStudy method)

 	(bayesloop.core.HyperStudy method)

 	(bayesloop.core.OnlineStudy method)

 	(bayesloop.core.Study method)

G

 	
 	Gaussian (class in bayesloop.observationModels)

 	GaussianMean (class in bayesloop.observationModels)

 	GaussianRandomWalk (class in bayesloop.transitionModels)

 	getCHPD() (bayesloop.core.OnlineStudy method)

 	getCPD() (bayesloop.core.OnlineStudy method)

 	getCTMD() (bayesloop.core.OnlineStudy method)

 	getCTMP() (bayesloop.core.OnlineStudy method)

 	getCurrentHyperParameterDistribution() (bayesloop.core.OnlineStudy method)

 	getCurrentParameterDistribution() (bayesloop.core.OnlineStudy method)

 	getCurrentParameterMeanValue() (bayesloop.core.OnlineStudy method)

 	getCurrentTransitionModelDistribution() (bayesloop.core.OnlineStudy method)

 	getCurrentTransitionModelProbability() (bayesloop.core.OnlineStudy method)

 	getDD() (bayesloop.core.ChangepointStudy method)

 	getDurationDistribution() (bayesloop.core.ChangepointStudy method)

 	getHPD() (bayesloop.core.HyperStudy method)

 	(bayesloop.core.OnlineStudy method)

 	getHPDs() (bayesloop.core.OnlineStudy method)

 	getHyperParameterDistribution() (bayesloop.core.HyperStudy method)

 	(bayesloop.core.OnlineStudy method)

 	getHyperParameterDistributions() (bayesloop.core.OnlineStudy method)

 	
 	getHyperParameterMeanValue() (bayesloop.core.OnlineStudy method)

 	getHyperParameterMeanValues() (bayesloop.core.OnlineStudy method)

 	getHyperParameterValue() (bayesloop.core.Study method)

 	getJHPD() (bayesloop.core.HyperStudy method)

 	getJointHyperParameterDistribution() (bayesloop.core.HyperStudy method)

 	(bayesloop.core.OnlineStudy method)

 	getParameterDistribution() (bayesloop.core.OnlineStudy method)

 	(bayesloop.core.Study method)

 	getParameterDistributions() (bayesloop.core.OnlineStudy method)

 	(bayesloop.core.Study method)

 	getParameterMeanValue() (bayesloop.core.OnlineStudy method)

 	getParameterMeanValues() (bayesloop.core.OnlineStudy method)

 	(bayesloop.core.Study method)

 	getPD() (bayesloop.core.OnlineStudy method)

 	(bayesloop.core.Study method)

 	getPDs() (bayesloop.core.OnlineStudy method)

 	(bayesloop.core.Study method)

 	getTMPs() (bayesloop.core.OnlineStudy method)

 	getTransitionModelDistributions() (bayesloop.core.OnlineStudy method)

 	getTransitionModelProbabilities() (bayesloop.core.OnlineStudy method)

H

 	
 	HyperStudy (class in bayesloop.core)

I

 	
 	Independent (class in bayesloop.transitionModels)

J

 	
 	jeffreys() (bayesloop.observationModels.Bernoulli method)

 	(bayesloop.observationModels.Gaussian method)

 	(bayesloop.observationModels.Laplace method)

 	(bayesloop.observationModels.Poisson method)

 	(bayesloop.observationModels.WhiteNoise method)

L

 	
 	Laplace (class in bayesloop.observationModels)

 	load() (bayesloop.core.Study method)

 	(in module bayesloop.fileIO)

 	
 	loadData() (bayesloop.core.Study method)

 	loadExampleData() (bayesloop.core.Study method)

N

 	
 	NotEqual (class in bayesloop.transitionModels)

 	
 	NumPy (class in bayesloop.observationModels)

O

 	
 	ObservationModel (class in bayesloop.observationModels)

 	OnlineStudy (class in bayesloop.core)

 	
 	optimize() (bayesloop.core.HyperStudy method)

 	(bayesloop.core.Study method)

P

 	
 	Parser (class in bayesloop)

 	pdf() (bayesloop.observationModels.AR1 method)

 	(bayesloop.observationModels.Bernoulli method)

 	(bayesloop.observationModels.Gaussian method)

 	(bayesloop.observationModels.GaussianMean method)

 	(bayesloop.observationModels.Laplace method)

 	(bayesloop.observationModels.NumPy method)

 	(bayesloop.observationModels.Poisson method)

 	(bayesloop.observationModels.ScaledAR1 method)

 	(bayesloop.observationModels.SciPy method)

 	(bayesloop.observationModels.SymPy method)

 	(bayesloop.observationModels.WhiteNoise method)

 	
 	plot() (bayesloop.core.HyperStudy method)

 	(bayesloop.core.OnlineStudy method)

 	(bayesloop.core.Study method)

 	plotHyperParameterEvolution() (bayesloop.core.OnlineStudy method)

 	plotParameterEvolution() (bayesloop.core.OnlineStudy method)

 	(bayesloop.core.Study method)

 	Poisson (class in bayesloop.observationModels)

 	processedPdf() (bayesloop.observationModels.ObservationModel method)

R

 	
 	RegimeSwitch (class in bayesloop.transitionModels)

S

 	
 	save() (in module bayesloop.fileIO)

 	ScaledAR1 (class in bayesloop.observationModels)

 	SciPy (class in bayesloop.observationModels)

 	SerialTransitionModel (class in bayesloop.transitionModels)

 	set() (bayesloop.core.Study method)

 	setObservationModel() (bayesloop.core.Study method)

 	setOM() (bayesloop.core.Study method)

 	
 	setTM() (bayesloop.core.Study method)

 	setTransitionModel() (bayesloop.core.Study method)

 	setTransitionModelPrior() (bayesloop.core.OnlineStudy method)

 	simulate() (bayesloop.core.Study method)

 	Static (class in bayesloop.transitionModels)

 	step() (bayesloop.core.OnlineStudy method)

 	Study (class in bayesloop.core)

 	SymPy (class in bayesloop.observationModels)

T

 	
 	TransitionModel (class in bayesloop.transitionModels)

W

 	
 	WhiteNoise (class in bayesloop.observationModels)

 _images/tutorials_probabilityparser_1_0.png
07 | = Epectedrotrnp

0

002
[——

ots

o0
02

— Vasiy s

o

05
0
02
0
<2
N

— Simuiated i fuctuations
) &

o 00 20 20 0 E
“Time farbtrary unts]

_images/tutorials_probabilityparser_25_0.png
H

pS>1)

Time

_images/tutorials_priordistributions_9_1.png
025

0

aos

a0
w70 1e80 60 1000 010 020 030

tChange

_images/tutorials_priordistributions_9_3.png
025

0

aos

a0
w70 1e80 o0 1000 010 020 030

tChange

_images/examples_anomalousdiffusion_1_0.png
00

20 @0
position [au]

w0

@0

_images/examples_anomalousdiffusion_23_0.png
020
s
&
a0s
a0

o 20 @0 o o ws w0 w0 @0
time step

_static/comment-bright.png

_images/examples_anomalousdiffusion_17_0.png
'y position [a.u]

2

xposition [au]

3

_images/tutorials_probabilityparser_5_0.png
05 030

w s
w
i
w
fos
w
- N N P [
o
a o
e m wm W

time step

— i volatity

- s voltity

00

2™ m
time step

_images/examples_anomalousdiffusion_19_0.png
]

Bl

[e] uomssod &

x positon [au]

_static/ajax-loader.gif

_images/examples_anomalousdiffusion_5_0.png
0

20

20

w0

00

o

2

00

o @ 00

X positon [au]

_images/examples_anomalousdiffusion_9_0.png
20

w00
time step

@0

0

_images/examples_anomalousdiffusion_25_0.png
el Auwsngp

g g 5 g g g
g g g g g B

LK1

] Bl £
L] uonsod £

_static/comment-close.png

_images/examples_anomalousdiffusion_27_0.png
gge8eR

[ve] Aususp Apigeqoid

] a0 oz
diftusivity fa.u]

]

004

_static/comment.png

_images/examples_stockmarketfluctuations_13_0.png
agot0

o005

0000

bg-retums

aeor
acone
aoos
2 aooos
% otors
aconz
acont
a0

“0am

THam

tHam

2pm

2pm

tom

1pm
Nov 28, 2016

_images/examples_stockmarketfluctuations_15_0.png
price [USD]

o

218
214
212
210
208
208
204
202

s
0
0
a
0

1

2

<3

4

“0am

THINL AL ML
i [

tHam

tHam

2pm

2pm

1pm
Nov 28, 2016

om

_images/examples_anomalousdiffusion_11_0.png
0

20 '

20 4

2

o @ 00
X positon [au]

_images/examples_anomalousdiffusion_13_0.png
00

position [a..

50

0

_images/examples_anomalousdiffusion_15_0.png
0

0

0

_static/file.png

_images/examples_stockmarketfluctuations_17_0.png
price [USD]

“0am

“0am

tHam

tHam

2pm

2pm

o

1pm
Nov 28,2016

2m

»m

om

_static/html_logo.png

nav.xhtml

 Table of Contents

 		
 Welcome to bayesloop’s documentation!

 		
 Installation

 		
 Development version

 		
 Dependencies

 		
 Optional dependencies

 		
 Tutorials

 		
 First steps with bayesloop

 		
 Study class

 		
 Data import

 		
 Observation model

 		
 Transition model

 		
 Model fit

 		
 Plotting

 		
 Saving studies

 		
 Model Selection

 		
 Bayes factors

 		
 Combined transition models

 		
 Serial transition model

 		
 Optimization of hyper-parameters

 		
 Global optimization

 		
 Conditional optimization in nested transition models

 		
 Hyper-study

 		
 Change-point study

 		
 Analyzing abrupt changes of parameter values

 		
 Analyzing structural breaks in time series models

 		
 Online study

 		
 Prior distributions

 		
 Parameter prior

 		
 Hyper-parameter priors

 		
 Custom observation models

 		
 Sympy.stats random variables

 		
 Scipy.stats probability distributions

 		
 NumPy likelihood functions

 		
 Probability parser

 		
 Multiprocessing

 		
 Examples

 		
 Anomalous diffusion

 		
 Diffusion gradient

 		
 Regime-switch diffusion process

 		
 Stock market fluctuations

 		
 Persistent random walk model

 		
 Online study

 		
 Volatility spikes

 		
 Islands of stability

 		
 Automatic tuning

 		
 Real-time model selection

 		
 API Reference

 		
 Study types

 		
 Observation models

 		
 Transition models

 		
 File I/O

 		
 Probability Parser

_static/down.png

_images/examples_stockmarketfluctuations_21_1.png
“oam

tHam

2pm

o
Nov 28, 2016

_images/examples_stockmarketfluctuations_23_0.png
a5

004

a0

“0am

tHam

2pm

pm
Nov 28, 2016

_static/up-pressed.png

_images/examples_stockmarketfluctuations_19_0.png
a6
a0s
004
5 002
0z
ot
a0

o010
00008
00008
00004
o002
00000

fOam tlam fZpm fpm Zm m dpm
Nov 28, 2016

fOam tam 1Zpm fpm Zm m 4pm
Nov 28, 2016

1077

2(10%)

_static/minus.png

_images/examples_stockmarketfluctuations_1_0.png
price [USD]

218
214
212
210
208
208
204
202

“0am

THam

2m

tom
Nov 28,2016

_static/plus.png

_images/tutorials_changepointstudy_11_1.png
000 om

_images/tutorials_changepointstudy_13_0.png
probability

0o

08

007

a6

aos

004

o0

oz

oot

a0

E) » ©
Guration between t_1 and t 2 (in time steps)

_images/examples_stockmarketfluctuations_3_0.png
Jog-retums

agot0

o005

0000

00005

00010

“0am

tHam

2pm

tom
Nov 28,2016

_static/up.png

_images/logo_400x100px.png

_images/tutorials_changepointstudy_15_0.png
‘accident_rate

year

_static/down-pressed.png

_images/tutorials_changepointstudy_17_1.png
a0
0
002
om0
0003
0006 §
0004
0002
0000

w0

1010

_images/tutorials_changepointstudy_19_0.png
025

0

aos

a0

3

En

20

_images/tutorials_changepointstudy_5_1.png
025

0

a0
s

1005

year

_images/tutorials_changepointstudy_7_0.png
year

_images/tutorials_changepointstudy_23_0.png
probability

0o

08

007

a6

aos

004

o0

oz

oot

a0

) E) »

Guration between t_1 and t 2 (in time steps)

_images/tutorials_changepointstudy_27_0.png
‘accident_rate

.
o I I

w0 s

w0 tees

160
year

1695

_images/tutorials_customobservationmodels_3_5.png
ambda.

2

.

o

1660

1680

year

_images/tutorials_customobservationmodels_7_5.png
ga

2

o

1660

1680

 ear

_images/tutorials_changepointstudy_9_1.png
year

_images/tutorials_customobservationmodels_19_0.png
o 20 0 @0 o0
time step

_images/tutorials_firststeps_15_0.png
1060

050

1020

1000

1680

1660

year

_images/tutorials_firststeps_17_0.png
accident rate

_images/tutorials_customobservationmodels_9_1.png

_images/tutorials_hyperstudy_3_0.png
o8

a6

o1

oz

a1

08

a6

004

oz

a0

2
siope

0

a

at0
08

200

8 oos

oz

a0

_images/tutorials_hyperstudy_5_0.png
areruspoe

1060

1050

1020

1000

1680

1660

year

_images/tutorials_hyperparameteroptimization_3_1.png
areruspoe

1060

1050

1020

1000

1680

1660

year

_images/tutorials_hyperstudy_1_1.png
a0
0
a0z
aonf
00§
0005 &
0004
0002
0000

_images/tutorials_modelselection_9_1.png
areruspoe

year

_images/tutorials_modelselection_5_1.png
year

_images/tutorials_modelselection_7_1.png
areruspoe

1060

1050

1020

1000

1680

1660

year

